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PREFACE

This book is designed to be a self-contained teaching instrument for those stu-
dents and readers interested in learning hypersonic flow and high-temperature
gas dynamics. Tt assumces no prior familiarity with cither subject on the part of
the rcader. If you have never studicd hypersonic and/or high-temperature gas
dynamics before, and if you have never worked extensively in the arca. then this
hook is for vou. On the other hand, if you have worked and/or are working in
these arcas, and you want a cohesive presentation of the fundamentals, a devel-
opment of important theory and techniques. a discussion of the salient results
with emphasis on the physical aspects, and a presentation of modern thinking in
these arcas, then this book is also Jor vouw. In other words, this book is aimed for
two roles: (1) as an effective classroom text which can be used with case by the
mstructor, and which can be understood with case by the student; and (2) as a
viable, professional working tool on the desk of all engincers, scientists. and
managers who have any contact in their jobs with hypersonic and/or high-tem-
perature flow.

The only background assumed on the part of the reader is a basic knowl-
edge of undergradnate fluid dynamics, inctuding o basic introductory course on
compressible flow; that is, the reader is assumed to be familiar with matenal
exemplificd by two of the author’s previous bools, namely. Fundamentals of Acro-
dynamics (McGraw-Hill, 1984), and the first half of Modern Compressible Flow:
With Historical Perspective (McGraw-Hill, 1982). Indeed, throughout the pres-
ent book, frequent reference is made to basic material presented in these two
books. Finally, the present book 1s pitched at the advanced senior and fivst-yvear
graduate levels, and is designed to be used in the clussroom as the main text for
courses at these levels in hypersonic flow and high-temperature gas dynamics.
Homework problems are given at the ends of most chapters in order to enhance
its usc as a teaching instrument.

Hypersonic acrodynamics 1s an mmportant part of the entire flight spec-
trum, representing the segment at the extreme high veloeity of this spectrum.

i
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Interest in hypersonic acrodynamics grew in the 1950s and 1960s with the ad-
vent of hypersonic atmospheric entry vehicles, especially the manned space pro-
gram as represented by Mercury, Gemini. and Apotlo. Today, many new,
exciting vechiele coneepts involving hypersonic flight arc driving renewed and. in
some cases. frenzied interest in hypersonics. Such new concepts arc described
in Chapter 1. This book s a response to the need to provide a basic education
in hypersonic and high-temperature gas dynamics for a new generation of engi-
neers and scientists, as well as to provide a basic discussion of these areas {rom
a modern perspective. Six texts in hypersonic flow were published before 1966:
the present book is the first basic classroom text to become available since then.
Therefore. the present book is intended to make up for this 20-year hiatus, and
to provide a modern education in hypersonic and high-temperature gas dynam-
ics, while at the same time discussing at length the basic lundamentals.

In order to enhance the reader’s understanding. and to peak his or her
interest. the present book 1s written 1n the style of the author’s previous ones,
namcly, it is intentionally written in an informal. conversationat style. The
author wants the reader to fhare fun while learning these topics. This is not
difficult. because the arcas of hypersonic and high-temperature gas dynanics are
full of interesting and exciting phenomena and applications.

The present book is divided into three parts. Part [ deals with inviseid
hypersonic flow, emphasizing purely the fluid dynamic effects of the Mach
number becoming large. High-temperature cffeets are not inchided. Part T deals
with viscous hypersonic flow, emphasizing the purcly fluid dynamic cflcets of
including the transport phenomena of viscosity and thermal conduction at the
same time that the Mach number becomes large. High-temperature effects are
not included. Finally, Part 111 deals with the influcnce of high temperatures on
both inviscid and viscous flows. In this fashion. the reader is led in an organized
fashion through the various physical phenomena that dominate high-speed acro-
dynamics. To further enhance the organization of the material, the reader is
given a “roadmap™ in Figure 1.23 to help guide his or her thoughts as we pro-
gress through our discussions,

When this book was first started, the author’s intent was to have a “Part
[V." which would cover the “miscellancous™ but important topics of low density
flows, experimental hypersonics, and applicd acrodynamics associated with hy-
personic vehicle design. During the course of writing this book, it quickly be-
came apparent that including Part TV would vastly exceed the length constraints
allotted to this book. Therefore. the above muatters are not considered in any
detail here. This is not because of a lack of importance of such material, but
rather becanse of an cffort to emphasize the basic fundamentals in the present
book. Therefore, Parts L1 and HI arce suflicient; they constitute the cssenee of
a neeessary fundamental backeground in hypersonic and high-temperature gas
dynamics. The material of the missing “Part IV” will have to wait for another
time.

The content of this book is influenced in part by the author’s experience in
teaching such material in courses at the University of Maryland. !t is also in-
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luenced by the authors three-day short course on the introduction to hyper-
sonic acrodynamics which he has had the privilege to give at ten different
laboratorics, companies. and universities over the past year. These experiences
have “finc-tuned” the present material in favor of what the reader wants to
know, and what he or she is thinking.

Several organizations and people are due the sincere thanks of the author
in aiding the preparation of this book. First, the author is grateful to the
National Air and Space Museum of the Smithsonian Institution where he spent
an cnlightening sabbatical year during 1986- 1987 as the Charles Lindbergh Pro-
fessor in the Acronautics Department. A substantial portion of this book was
written during that sabbatical ycar at the museum. Secondly, the author is
grateful to the University of Maryland for providing the intellectual atmosphere
conductive to scholarty projects. Also, many thanks go to the author’s graduate
students in the Hypersonic Acrodynamics program at Maryland —thanks for the
many enlightening discussions on the nature of hypersonic and high-temperature
flows. For the mechanical preparation of this manuscript, the author has used
his own “word processor” named Susan O. Cunningham—a truly “human”
human being who has typed the manuscript with the highest professional stan-
dards. Finally, once again the author is grateful for the support at home
provided by the Anderson family, which allowed him to undertake this project
in the first place, and for joining him in the collective sigh of relief upon its
completion.

I would like 10 express my thanks for the many useful comments and
suggestions provided by colleagues who reviewed this text during the course of
its development, cspecially to Judson R. Baron, Massachusetts Institute of Tech-
notogy; Daniel Bershader, Stanford University; John D. Lee, Ohio State
University: and Maurice L. Rasmussen, University of Oklahoma.

John D. Anderson, Jr.



CHAPTER

SOME
PRELIMINARY
THOUGHTS

Almost everyone has their own definition of the term hypersonic. If
we were to conduct something like a public opinion poll among
those present, and asked everyone to name a Mach number above
which the flow of a gas should properly be described as hypersonic
there would be a majority of answers round about five or six, but it
would be quite possible for someone to advocate, and defend,
numbers as small as three, or as high as 12.

P. L. Roe, comment made in a lecture at
the Von Karman Institute, Belgium, January, 1970



2 HYPFRSONIC AND HIGH-TEMPERATURY, GAS DYNAMICS

1.1 HYPERSONIC FLIGHT—
SOME HISTORICAL FIRSTS

The day is Thursday, February 24, 1949; the pens on the automatic plotting
boards at South Station are busy tracking the altitude and course of a rocket
which just moments before had been launched from a site three miles away on
the test range of the White Sands Proving Ground. The rocket is a V-2, one of
ntany brought to the United States from Germany after World War T By this
time, faunching V-2s had become almost routine for the crews at White Sunds.
but on this day neither the launch nor the rocket are “routine.” Mounted on
top of this V-2 is a slender, ncedle-like rocket called the WAC Corporal.
which serves as a scecond stage to the V-2, This test firing of the combination
V-2 WAC Corporal is the first meaningful attempt to demonstrate the use of a
multistage rocket for achieving high velocities and high altitudes. and 1s part of a
larger program Jabeled " Bumper™ by the U.S. Army. All previous rocket launch-
ings of any importance, both in the United States and in Europe, had utihized
the single-stage V-2 by itself. Tigure 1.1 shows a photograph of the "Bumper™
rocket as it ifts off the New Mexico desert on this clear, February day. The pen
plotters track the V-2 to an altitude of 100 miles at a velocity of 3500 mph, at
which point the WAC Corporal is ignited. The slender upper stage accelerates to
a maximunt velocity of $150 mph, and reaches an altitude of 244 miles, exceed-
ing by a healthy 130 mifes and previous record set by a V-2 alone. After reach-
mg this peak, the WAC Corporal noses over. and careers back into the
atmosphere at over 5000 mph. In so doing, it becomes the first object of human
origin to achieve hypersonic flight—the first time that any vehicle has flown faster
than five times the speed of sound. In spitc of the pen plotters charting its
course, the WAC Corporal cannot be found in the desert after the test. Indeed,
the only remnants to be recavered later are a charred clectric switch and part of
the tail section, and these are found more than a year later, in Aprit 1950.

The scene shifts to the smadl village of Smelooka in the Ternov District,
Saratov region of Russia. The time is now 10:55 a.m. (Moscow time) on April
12, 1961. A strange, spherical object has just tanded under the canopy of a
parachute. The surface of this capsule is charred black, and it contains three
small viewing ports covered with heat-resistant glass. Inside this capsule s
Fhight Major Yuri Gagarin, who just 108 minutcs earlier had been sitting on top
of a rocket at the Russian cosmodrome at Baikonur near the Aral Sea. What
partly transpired during those 108 minutes is announced to the world by a
broadcast from the Sovict newsagency Tass at 9:59 a.m., quoted below:

The world's first spaceship, Vostok (East), with a man on board was launched into
orbit from the Soviet Union on April 12, 1961. The pilot space-navigator of the
satellite-spaceship Vostok is a citizen of the U.S.S.R., Flight Major Yuri Gagarin.
The launching of the multistage space rocket-was successful and, after attain-
ing the first escape velocity and the separation of the last stage of the carrier rock-
et, the spaceship went into free flight on around-the-earth orbit. According to
preliminary data, the period of the revolution of the satellite spaceship around the
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FIGURE 1.1
V-2/WAC Corporal lifi-off on Feb. 24, 1949; the first object of human origin to achicve hypersonic
flight. (National Air and Space Museum.)

carth is 89.1 min. The minimum distance from the carth at perigee is 175 km (108.7
miles) and the maximum at apogee is 302 km (187.6 miles), and the angle of incli-
nation of the orbit plane to the equator is 65° 4'. The spaceship with the navigator
weighs 4725 kg (10,418.6 1b), excluding the weight of the final stage of the carrier
rocket.

After this announcement is made, Major Gagarin’s orbital craft, called Vostok 1,
is slowed at 10:25 am. by the firing of a retro-rocket, and enters the atmo-
spherc at a speed in excess of 25 times the speed of sound. Thirty minutes later,
Major Yuri Gagarin becomes the first man to fly in space, to orbit the carth,
and safely return. Moreover, on that day, April 12, 1961, Yuri Gagarin becomes
the first human being in history to experience hypersonic flight. A photograph of
the Vostok I capsule is shown in Fig. 1.2,

Later, 1961 becomes a bumper year for manned hypersonic flight. On May
5, Alan B. Shepard becomes the second man in space by virtue of a suborbital
flight over the Atlantic Ocean, reaching an altitude of 115.7 miles, and entering
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FIGURE 12

Vostok 1, in which Russian Major Yurt Gagarin became the first human 1o fly at hypersonic speed.
during the world’s first manned. orbital flight, April 12, 1961. (National Air and Space Miiseum.)

the atmosphere at a speed above Mach 5. Then, on June 23, U.S. Air Force test
pilot Major Robert White flics the X-15 airplane at Mach 5.3, the first X-15
flight to exceed Much 5. (In so doing, White accomplishes the first “mile per
sccond™ flight in an airplane. reaching a maximum velocity of 3603 mph.) This
record is extended by White on November 9, flying the X-15 at Mach 6.

The above events are historical “firets™ in the annuals of hypersonic flight.
They represent certain milestones and examples of the application of hypersonic
acrodynaniic theory and technology. The purpose of this book 1s to present and
discuss this theory and technology, with the hope that the reader, as a student
and professional, will be motivated and prepared to contribute to the hypersonic
milestones of the future.

1.2 HYPERSONIC FLOW-—
WHY IS IT IMPORTANT?

The development of acronautics and space flight, from its practical beginnings
with the Wright Brothers® first airplane flight on December 17, 1903 and Robert
H. Goddard’s first iquid-fueled rocket taunch on March 16, 1926, has been driv-
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cn by one primary urge—the urge to always fly faster and higher. Anyone who
has traced advancements in atreraft in the twenticth eentury has seen an expo-
nential growth in both speed and altitude, starting with the 35 mph Wright flyer
at sca level in 1903, progressing to 400 mph fighters at 30,000 ft in World War
H. transitioning to 1200 mph supersonic aircraft at 60,000 ft in the 1960s and
1970s. highlighted by the experimental X-15 hypersonic airplance which achicved
Muach 7 and an altitude of 354.200 ft on August 22, 1963, and finally capped by
the space shuttle—the ultimate in manned airplanes with its Mach 23 reentry
mto the Farth’s atmosphere from a 200-mite low-carth orbit. (See Rell | for
graphs which demonstrate the exponential incrcase in both aireraft speed and
altitude over the past 85 years.) Superimposed on this picture is the advent of
high-speed missiles and spacecralt: for example, the development of the Mach 25
intercontinental batlistic missile in the 1950s, the Mach 25 Mereury, Gemini,
and Vostok manned orbital spacecraft of the 1960s, and of course the historic
Mach 36 Apollo spacceraft which returned men from the moon starting in 1969,
The point here is that the extreme high-speed end of the flight spectrum has
been explored, penctrated. and utilized since the 1950s. Moreover, flight at this
end of the spectrum is called hypersonic flight, and the aerodynamic and gas
dynamic characteristics of such flight are classificd under the label of hiypersonic
aerodynamics - onc of the primary subjects of this book.

Hypersonic aerodynamics is different than the more conventional and cx-
pericnced regime of supersonic acrodynamics. These differences will be discussed
at length in Sce. 1.3, along with an in-depth definition of just what hypersonic
acrodynamics rcally means. However, we can immediately sec that such differ-
ences must exist just by comparing the shapes of hypersonic vehicles with those
of more commonplace supersonic aircraft. For example, Fig. 1.3 shows a Lock-
heed F-104. the first fighter aircraft designed for sustained supersonic flight at
Mach 2. This aircraft embodies principles for good supersonic aerodynamic de-
sign: a sharp, necedle-like nose and stender fuselage, very thin wings and tail
surfaces (3.36 pereent thickness to chord ratio) with very sharp leading edges

FIGURE 13

The Lockheed F-104, a supersonic airplane designed in the carly 1950s. (National Air and Space
Museum.) A
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FIGURE 14
The Drake-Carman hypersonic aireraflt/orbiter, proposed in 1953. (From Hallion, Ref. 2.)

(almost sharp cnough to pose a hazard during ground handling), and with a
tow-aspeet ratio of 2.45 for the straight wing itsclf—all designed to minimize
wave drag at supersonic speeds. To design a hypersonic airplance for flight at
much higher Mach numbers, 1t 1$ tempting to utilize these same design principles
—only more so. Indeed, such was the case {or an carly hypersonic aircrafl
concept conceived by Robert Carman and Hubert Drake of the NACA (now
NASA) tn 1953, One of their hand drawings from an internal NACA memoran-
dum is shown in Fig. 1.4 (see Ref. 2 for more details). Here we sce an carly
concept for a hypersonic booster/orbiter combination, where cach aircraft has a
sharp nose, slender {usclage, and thin, low-aspect-ratio straight wings—the same
features that are scen in the 1°-104- -exeept the aireraft in Fig. 1.4 is designed for
Mach 25. However, in 1953 hypersonic acrodynamics was in its infancy. Con-
trast Iig. 1.4 with another hypersonic atrplane designed just seven years later,
the X-20 Dynasoar shown in Fig. 1.5, Here we sec a completely different-looking
aircraft—one embodying new hypersonic principles which were not fully under-
stood 1n 1953, The X-20 design utilized a sharply swept delta wing with a blunt.
rounded leading edge, and a rather thick fusclage with a rounded (rather than
sharp) nosc. The fuselage was placed on top of the wing, so that the entire
undersurface of the vehicle was flat. The X-20 was intended to be an cxperi-
mettal aireraft for rocket-powered flight at Mach 20. Eclipsed by the Mercury,
Gemini, and Apollo manned space-flight program, the X-20 project was cancelled
in 1963 without the production of a vehicle. However, the X-20 reflected design
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FIGURE 15
The Boeing X-20A Dynasouar orbital hypersonic aiveraft, 1963, (From Hallion, Ref. 2.)

features which were uniquely hypersonic, and which were later contained in the
space shuttle. Indeed. the space shuttle is shown in Fig. 1.6 for further compar-
ison with the carlier concepts shown in Figs. 1.3 and 1.4, Clearly, hypersonic
vehicles are different configurations from supersonic vehicles, and hence we
might conclude (correctly) that hypersonic acrodynamics is different from super-
sonic acrodynamics. This difference is dramatically reinforced when we examine
Fig. 1.7. which shows the Apollo space vehicle, designed to return humans from
the moon. and to enter the carth’s atmosphere at the extreme hypersonic speed
of Mach 36. ere we see a very blunt body with no wings at all. To be objec-
tive, we have to realize that many considerations besides high-speed aerodynam-
ics go into the desien of the vehicles shown in Figs. 1.3 to 1.7; however, to
repeitt onee again, the important point here is that hypersonic vehicles are differ-
ent than supersonic vehicles, and this is in part duc to the fact that hypersonic
acrodynamics s different from supersonic aerodynamics.

Hypersonie flight, both manned and unmanned, has been successfully
achicved. However, at the time of this writing, it is by no means commonplace.
The cra of pracrical hypersonic flight is stitl ahead of us, and it poses many
exciting challenges to the acrodynamicist. Let us briefly examine some new ideas
for modern hypersonic vehicles. For example, there arc contemporary ideas for
hypersonic transports, to cruise al Mach 7 to 12, and to carry people from New



FIGURE 1.6
‘The Space Shuttle. (National Air and Space Museum.)

FIGURE 17

Artist’s conception of the atmosphere ceniry of the Apollo spacecraft. (National Air and Space
Museum.)

8
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FIGURE 1.8
A recent concept for a hypersonic transport. (MeDomnell-Douglas Aireroft Corp.)

York to Tokyo in less than two hours. Such a modern design concept s illus-
trated in Fig. 1.8, On an even more ambitious scale is the concept of an acro-
space plane -an aircraflt designed to take off horizontally from a runway, and
then to accelerate into orbit around the carth. It will subsequently carry out a
mission in orbit, or within the outer regions of the atmosphere. and then reenter
the atmosphere at Mach 25, finally landing under power on a conventional run-
way. This idca was first sertously examined by the U.S. Air Force in the early
1960s. and a combination of air-breathing and rocket propulsion was intended
to power the vchicle. Work on the carly acrospace plane was canceled in
October 1963 duc mainly to the design requircments cxceeding the state of the
art at that time. This idea has been resurrected in the mid-1980s by both NASA
and the Department of Defense, as well as by acrospace companies in England
and Germany. Current thinking on the design of a manned acrospace plane is
shown in the artist’s sketch in Fig. 1.9, and for a related unmanned vchicle in
Fig. 1.10. These aerospace planes will rely primarily on air-breathing propulsion
provided by supersonic combustion ramjet engines (SCRAMjets). In that regard,
it is important to mention an aspect that distinguishes the hypersonic transport
and the aerospace plane concepts from conventional subsonic and supersonic
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FIGURL 1.9 .
A conceptual acrospace plane, or transatmospheric vehicle, (McDonnell-Douglas Aircraft Corp.l)

Hotol—structural design

108 tonnes
LOX

IFIGURE 110

The HOTOL concept. (British Aircraft Corporation) 1, Forward fin; 2, Slim fuselage to reduce super-
sonic drag: 3, Payload bay containing single satellite weighing up to 11 tonnes; 4, Titanium/nickel
wing, shuttle-like planform; 5, Orbital maneuvering system engines: 6, Three cryogenic air-breathing/
rocket engines; 7, Engine intake; 8, Boundary layer diverter; 9, Variable area cones; 10, Rear spill;
[1, Semictrcular cowl; 12, Conical flow area; 13, Fixed forward cone; 14, Foreplanes,



SOME PRELIMINARY THOUGHTS 11

\—Shock T2 D

Q%

L
|

Schematic of engine
Cross section

Engine moedules

FIGURE 1.1t
Hypersonic vehicle with integrated SCRAMjet (N ASA),

airplane design philosophy. For subsonic and supersonic aircraft. the compo-
nents for providing lift (the wings), propulsion (the engmes and nacelles), and
volume (the fuselage) arc not strongly coupled with ecach other. They are sepa-
rate and distinct components, easily identifiable by looking at the airplanc:
moreover, they can be treated as separate aerodynamic bodies with only a mod-
eratc interaction when they are combined in the total aircraft. Modern hyper-
sonic acrodynamic design is cxactly the opposite. Figure .11 is an ¢xample of
an integrated airframe-propulsion concept for a hypersonic airplane, wherein the
entire undersurface of the vehicle is part of the SCRAMjet engine. Initial com-
pression of the uir takes place through the bow shock from the nose of the
afreraft; further compression. and supersonic combustion take place inside a se-
ries of modules near the rear of the aircraft, and then expansion of the burned
gases is partially realized through nozzles in the engine modules, but mainly
over the bottom rear surface of the aircraft, which is sculptured to a nozzle-like
shape. Hence., the propulsion mechanism is intimately integrated with the air-
frame. Moreover. most of the lift is produced by high pressurc behind the bow
shock wave and exerted on the relatively flat undersurface of the vehicle: the use
of large. distinct wings is not necessary for the production of high lift. Finally,
the fuel for air-breathing hypersonic airplanes shown in Figs. 1.8-1.11 will most
likely be liquid H,. which occupies a large volume. All of these considerations
combine in o hypersonic vehicle in such a fashion that the components to gener-
ate lift, propulsion and valume are not separate {rom each other; rather, they are
closely integrated in the same overall lifting shape, in direct contrast to conven-
tional subsonic and supersonic vehicle design. Another new hypersonic vehicle
concept is the aecro-assisted orbital transfer vehicle (AOTV), which will be
designed to transport material and pcople between the space shuttle in low
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Three coneepts for an aero-assisted orbital transfer vehicle (AOTV). (NASA.)
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earth orbit (about 300 km above the surface of the carth) and satellites in
geosynchronous orbit (35000 km above the earth). When the AOTV leaves
geosynchronous orbit and returns to low carth orbit, it will dip into the carth's
atmosphere and use aerodynamic drag to reduce its velocity, thus cnabling
rendezvous with the shutde. The AOTV will be a high-flying hypersonic vehicle,
flying no stower than Mach 30 and no lower than about 250,000 ft altitude.
Some design concepts {or low, medium, and high Iift-to-drag ratio AOTVs are
shown in Fig. 1,12, In additton, mention should be made of interest in new hyper-
sonic missiles for defense purposes, both tactical and strategic, involving both air-
breathing and rocket propulsion.

Finallv. return to the question asked at the beginning of this section:
Hypersonic flow, why is it important? We now have a fecling for the answer.
Hypersonic flow is important because:

1, Tt is physically different from supersonic flow.
2. Tt is the flow that will dictate many of the new exciting vehicle designs for the
twenty-first century.

Recognizing this importance. the purpose of the present book is to introduce the
reader to the busic flundamentals of hypersonic flow, including an emphasis on
high-temperature gas dynamics which, as we will see is an important aspect of
high-speed flows in gencral. Wherever pertinent, we will also discuss modcern
experimental and computational fluid dynamic applications in hypersonic and
high-temperature flow, as well as certain related aspects of hypersonic vehicle
design. Such material is an integral part of modern aerodynamics. Morcover, the
importance of this material will grow stcadily into the twenty-first century, as we
continue to extend the boundaries of practical flight.

1.3 HYPERSONIC FLOW—WHAT IS IT?

There s a conventional vule of thumb that defines hypersonic acrodynamics as
those flows where the Mach number, M, is greater than 5. However, this is no
more than just a rule of thumb; when a flow s accelerated from M = 4,99 to
M = 5.01. there is no “clash of thunder”™ and the flow docs not “instantly turn
from green to red.” Rather, hypersonic flow is best defined as that regime where
certain physical flow phenomena become progressively more important as the
Mach number is increased to higher values. In some cases, onc or morc of these
phenomena may become important above Mach 3. whereas in other cases they
may not be compelling until Mach 7 or higher. The purpose of this section is to
briefly describe these physical phenomena: in some sense this entire section will
constitute a “definition™ of hypersonic flow. For more details of an introductory
nature, scc Ref. 3.
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A. Thin Shock Layers

Receall from oblique shock theory (see, for example, Refs. 4 and S5) that, for a
given flow deflection angle, the density increase across the shock wave becomes
progressively larger as the Mach number is increased. At higher density. the
mass flow behind the shock can more easily “squeeze through™ smaller areas.
For flow over a hypersonic body, this means that the distance between the body
and the shock wave can be small. The flowfield between the shock wave and the
body is defined as the shock layer, and for hypersonic speeds this shock layer
can be quite thin, For example, consider the Mach 36 flow of a calorically per-
feet gas with a ratio of specific heats, y = ¢, /¢, = 1.4, over a wedge of 15° half
angle. From standard oblique shock theory the shock-wave angle will be only
18°, as shown in Fig. 1.13. If high-temperature, chemically reacting eflects are
included, the shock wave angle will be even smaller. Clearly, this shock layer is
thin. It is a busic characteristic of hypersonic flows that shock waves lie close to
the body, and that the shock layer is thin, In turn, this can create some physical
complications, such as the merging of the shock wave itself with a thick, viscous
boundary layer growing from the body surface-—a problem which becomes im-
portant at low Reynolds numbers. However, at high Reynolds numbers, where
the shock layer is essentially inviscid, its thinness can bc used to theorctical
advantage, leading to a gencral analytical approach called “thin shock-layer the-
ory” (to be discussed in Chap. 4). In the extreme, a thin shock layer approaches
the fhnd dynamic model postulated by Issac Newton in 1687; such “newtonian
theory™ 1s simple and straightforward, and is {requently used in hypersonic aero-
dynamics for approximate caleulations (to be discussed in Chap. 3).

B. Entropy Layer

Consider the wedge shown in Fig. 1.13, except now with a blunt npse, as
sketched in Fig. 1.14. At hypersonic Mach numbers, the shock layer over the
blunt nose is also very thin, with a small shock-detachment distance. d. In the
nose region, the shock wave is highly curved. Recall that the entropy of the Aow
increases across a shock wave, and the stronger the shock, the larger the entropy
increase, A streamline passing through the strong, nearly normal portion of the
curved shock near the centerline of the flow will experience a larger entropy

M, =36

e i

FIGURE L13
Thin hypersonic shock fayer,
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The entropy laver.

increase than a neighboring streamline which passes through a weaker portion
of the shock further away from the centerline. Hence, there are strong entropy
gradients gencrated in the nose region; this “entropy layer” flows downstream,
and essentially wets the body for large distances from the nose, as shown in Fig.
1.14. The boundary layer along the surface grows inside this entropy layer, and
is affected by it Since the entropy layer is also a region of strong vorticity, as
related through Croceo’s theorem from classical compressible flow (see, {or ex-
ample Refl 4). this interaction is sometimes called a “vorticity interaction™ The
entropy layer causes analytical problems when we wish to perform a standard
boundary-fayer calculation on the surface, because there is a question as to what
the proper conditions should be at the outer edge of the boundary layer.

C. Viscous Interaction

Consider as boundary fayer on a flat plate in a hypersonic flow, as sketched in
Fig. 115, A high-velocity, hypersonic flow contains a large amount of kinctie
energy: when this flow is slowed by viscous effects within the boundary layer,
the lost kinetic energy is transformed (in part) into internal cnergy of the gas—
this is called viscous dissipation. In turn. the temperature increases within the
boundary laver: a typical temperature profile within the boundary layer is also
sketched 1 Fig. 115, The charactenstics of hypersonic boundary layers arc
dominated by such temperature increases. For example, the viscosity coeflicient
increases with temperature, and this by itsel{ will make the boundary layer
thicker. In addition. becausc the pressure p is constant in the normal dircction
through a boundary layer, the incrcase in temperature T results in a decrease in
density p through the equation of state, p = p/RT, where R is the specific gas
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FIGURE 1.1%
Temperature profile in a hypersonic boundary layer.

constant. In order to pass the required mass flow through the boundary layer at
reduced density, the boundary-layer thickness must be larger. Both of these phe-
nomena combine to make hypersonic boundary layers grow more rapidly than
at slower speeds. Indeed, the flat plate compressible laminar boundary layer
thickness o grows cssentially as

where M, is the freestream Mach number, and Re, is the local Reynolds
number. {This relation will be derived in Chap. 6.) Clearly, since § varies as the
square of M, it can become inordinately large at hypersonic speeds.

The thick boundary layer in hypersonic flow can exert a major displace-
ment efleet on the inviscid low outside the boundary layer, causing a given
body shape to appear much thicker than it really is. Due to the extreme thick-
ness of the boundary-layer flow, the outer inviscid flow is greatly changed: the
changes m the mvisaid flow in turn feed back to affect the growth of the bound-
ary laver. This major interaction between the boundary layer and the outer in-
viseid flow is called viscous interaction. Viscous interactions can have important
effects on the surface pressure distribution. hence hift, drag, and stability on hy-
personic vehicles. Moreover, skin friction and heat transfer are increascd by
viccous interaction. For example, Fig. 1.16 illustrates the viscous interaction on
a sharp, right-circular cone at zero degrees of angle of attack. Here, the pressure
distnbution on the cone surface p is given as a function of distance from the tip.
These are experimental results obtained from Ref. 6. If there were no viscous
interaction, the inviscid surface pressure would be constant, cqual to p, (indi-
cated by the horizontal dashed Hne in g, 1.16). However, due to the viscous
nteraction, the pressure near the nose is considerably greater; the surface pres-
sure distribution decays further downstream, ullimately approaching the inviscid
vatue far downstream. These, and many other aspects of viscous interactions will
be discussed in Chap. 7.
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FIGURE 1.16
Viscous interaction eflect. Induced pressure on a sharp cone at M, = 11 and Re = 1.88 x 10° per
fool.

The boundary layer on a hypersonic vehicle can become so thick that it
essentially merges with the shock wave—a merged shock layer. When this hap-
pens the shock layer must be treated as fully viscous, and the conventional
boundary layer analysis must be completely abandoned. Such matters will be
discussed in Chap. 9.

D. High-Temperaturc Flows

As discussed previously, the kinetic cnergy of a high-speed, hypersonie flow is
dissipated by the influcnce of frictian within a boundary laver. The extreme
viscous dissipation that occurs within hypersonic boundary layers can create
very high temperatures—high cnough to excite vibrational cnergy internally
within molecules, and to cause dissociation and even ionization within the gas.
If the surface of a hypersonic vehicle is protected by an ablative heat shield, the
products of ablation are also present in the boundary layer, giving rise to com-
plex hydrocarbon chemical reactions. On both accounts, we see that the surface
of a hypersonic vehicle can be wetted by a chemically reacting boundary luyer.
The boundary laver is not the only region of high-temperature flow over a
hypersonic vchicle. Consider the nose region of a blunt body. as sketched in Fig.
1.17. The bow shock wave is normal, or ncarly normal, in the nose region, and
the gas temperature behind this strong shock wave can be enormous at hyper-
sonic specds. For example. Fig. 1.18 1s a plot of temperature behind a normal
shock wave as a function of free-stream velocity, for a vehicle flying at a stan-
dard altitude of 52 km: this figure is taken from Rel. 4. Two curves arc shown:
(1) the upper curve. which assumes a calorically perfect nonreacting gas with the
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High-temperature shock layer.

ratio of specific heats y = 1.4, and which gives an unrealistically high value of
temperature; and (2) the lower curve, which assumes an equilibrium chemically
reacting gas, and which is usually closer to the actual situation. This figure illus-
trates two important points:

I. By any account, the temperature in the nose region of a hypersonjc vehicle
can be extremely high, for example. reaching approximately 11,000 K at a
Mach number of 36 (Apollo reentry).

2. The proper inclusion of chemically reacting effects is vital to the calculation
of an accurate shock-layer temperature; the assumption that 7 is constant and
equal to 1.4 is no longer valid.

So we sce that, for a hypersonic flow, not only can the boundary layer be chemi-
cally reacting, but the entire shock layer can be dominated by chemically react-
ing flow.

For a moment, let us examine the physical nature of a high-temperature
gas. In introductory studies of thermodynamics and compressible flow, the gas is
assumed to have constant specific heats, hence the ratio y = ¢,/c, is also con-
stant. This leads to some ideal results for pressure, density, temperature, and
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FIGURE 1.18
Temperature behind a normal shock wave as a function of free-stream velocity at a standard altitude
of S2km. (From Ref. 4)

Mach number variations in a flow. However, when the gas temperature is m-
creased to high values, the gas behaves in a “nonideal” fashion. Specifically:

1. The vibrational cnergy of the molecules becomes excited, and this causes the
specific heats ¢, and ¢, 1o become functions of temperature. In turn, the ratio
of specific heats, 3 = ¢,/c,. also becomes a function of temperature. For air,
this effect becomes important above a temperature of 800 K.

2. As the gas temperature is further increased, chemical reactions can occur. For
an equilibrium chemically reacting gas. ¢, and ¢, are functions of both tem-
perature and pressure, and hence ¢y = f(7, p). For air at 1 atm pressure, O,
dissociation (O, — 20) begins at about 2000 K, and the molecular oxygen is
essentially totally dissociated at 4000 K. At this temperature N, dissociation
(N, — 2N) begins, and is cssentially totally dissociated at 9000 K. Above a
temperature of 9000 K, ions arc formed (N—- N¥ +¢7, and O - O* + ¢™),
and the gas becomes a partially ionized plasma.

All of these phenomena are called high-temperature effects. (They are frequently
referred to in the acrodynamic literature as “real-gas effects,” but there are good
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technical reasons to discourage the use of that label, as we will see later.) 1f the
vibrational excitation and chemical reactions take place very rapidly in compar-
ison to the time it takes for a fluid clement to move through the Nowficld. we
have vibrational and chemical equilibrium flow. Il the opposite is truc, we have
nonequilibrinm flow, which is considerably more difficutt to analyze. All of these
effeets will be discussed at length in Chaps. 10-18.

High-temperature chemically reacting flows can have an influence on Hft,
drag, and moments on a hypersonic vehicle. For example, such cffects have been
found to be important for estimating the amount of body-flap deflection neces-
sary to trim the space shuttle during high-speed reentry. However, by far the
most dominant aspect of high temperatures in hypersonics is the resultant high
heat-transfer rates to the surfuce. Aerodynamic heating dominates the design of
all hypersonic machinery, whether it be a flight vehicle, a ramjet engine to power
such @ vehicle, or a wind tunnel to test the vehicele. This aerodynamic heating
takes the form of heat transfer from the hot boundary layer to the cooler sur-
fuce —called convective heating, and denoted by ¢, in Fig. 1.17. Morcover. il the
shock-layer temperature is high cnough, the thermal radiation cmitted by the
gas itself can become important, giving rise to a radiative flux to the surface--
called radiative heating, and denoted by ¢, in Fig. 1.17. (In the winter, when you
warm yoursel beside a roanng fire in the fireplace, the warmth you fecl is not
hot air blowing out of the fireplace, but rather radiation from the flame itscll.
Imagine how “warm™ you would fecl standing next to the gas behind a strong
shock wave at Mach 36, where the temperature is 11,000 K— about twice the
surface temperature of the sun.) For example, for Apollo reentry, radiative heat
transfer was more than 30 pereent of the total heating. For a space probe enter-
ing the atmosphere of Tupiter, the radiative heating will be more than 95 percent
of the total heating.

Another consequence of high-temperature flow over hypersonic vehicles is
the “communications blackout™ expericnced at certain altitudes and velocitics
during atmospheric entry, where it is impossible to transmit radio waves either
to or from the vehicle. This is caused by ionization in the chemically rcacting
flow, producing frec clectrons which absorb radio-frequency radiation. There-
fore, the accurate prediction of electron density within the flowficld is important.

Clearly, high-temperature effects can be a dominant aspect of hypersonic
acrodynamics, and because of this importance, Part 1 of this book is devoted
entirely to high-temperature gas dynamics. (Part 111 is self-contained, and repre-
sents a study of high-temperature gas dynamics in general, a field with applica-
tions that go far beyond hypersonics, such as combustion, high-energy lasers,
plasmias, and laser-matter interaction, to name just a few.)

E. Low-Density Flow

Consider for a moment the air around you; it is made up of individual mole-
cules, principally oxygen and nitrogen, which are in random motion. Imagine
that you isolate one of these molecules, and watch its motion. 1t will move a
certain distance, and then collide with one of its neighboring molecules, after
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which it will move another distance, and collide again with another neighboring
molecule, and it will continue this molecular collision process indefinitely, Al-
though the distance between collisions is different for cach of the individual
collisions, over a peviod of time there will be some arerage distance the molecule
moves between successive collisions, This average distance 1s defined as the mean
free parh. denoted by 2. Al standard sea level conditions for air, 2 =2.176 x
107711, a very small distance. This implies that, at sca level, when you wave
your hand through the air, the gas itself “feels” like a continnous medinm —a
so-called contimunm. Most acrodynamic problems (more than 99.9 percent of all
applications) are properly addressed by assuming a continuous medium: indeed,
atl of our preceding discussion has so far assumed that the flow is a continuun.

Imagine now that we are at an altitude of 342,000 ft, where the air density
is much lower, und consequently the mean free path is much larger than at sea
level: indeed, at 342,000 t. 2 = 1 ft. Now, when you wave your hand through the
air, you are more able to “feel” individual molecular impacts; the air no longer
feels like a contmmuous substance, but rather like an open region punctuated by
individual, widcly spaced particles of matter. Under these conditions, the acro-
dynamic concepts, equations, and results based on the assumption of a contin-
wum  begin to break down; when this happens, we have to approach
acrodynamics from a different point of view. using concepts [rom kinetic theory.
This regime of acrodynamics is called low-density flow.

There arc certain hypersonic applications which involve low-density flow,
generally involving flight at high altitudes. For example, as noted in Ref. 7, the
flow in the nose region of the space shuttle cannot be properly treated by purely
continuum assumptions for altitudes above 92 km (about 300,000 ft). For any
given flight vchicle, as the altitude progressively increases (hence the density
decreases and « increases), the assumption of a continuum flow becomes ten-
uous. An altitude can be reached where the conventional viscous flow no-ship
conditions begin to fail. Specifically, at low densities the flow velocity at the
surface, which is normally assumed to be zero due to [riction, takes on a finite
value. This is called the refocity slip conditton. In analogous fashion. the gas
temperaturce at the surface, which is normally taken as equal to the surface tem-
perature of the material, now becomes something diflerent. This is called the
temperature slip condition. At the onsct of these slip effects, the governing equa-
tions of the flow are still assumed to be the familar continuum flow cquations,
except with the proper velocity and temperature-slip conditions utilized as bound-
ary conditions. However, as the altitude continues to increase, there comes a
point where the continuum flow cquations themselves are no longer valid, and
methods from kinetic theory must be used to predict the aerodynamic behavior.
Fnally, the air density can become low cnough that only a few molecules im-
pact the surface per unit time, and after these molecules reflect from the surface,
they do not interact with the incoming molecules. This is the rcgime of free
molecnle flow. For the space shuttle, the free molecular regime begins about
150 km (500,000 f1). Thercfore, in a simplified sense, we visualize that a hyper-
sonic vehicte moving from a very rarified atmosphere to a denser atmosphere
will shiflt from the free molecular regime, where individual molecular impacts on
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Ref. 7)

the surface are important, to the transition regime, where slip effects are impor-
tant, and then to the continuum regime.

The similarity parameter that governs these different regimes is the
Knusden munber, defined as Kn = J/L, where L is a characteristic dimension of
the body. The values of Kn in the different regimes are noted in Fig. 1.19, taken
from Ref. 7. Note that the region where the continuum Navier-Stokes cquations
hold 1s described by Kn < 0.2. However, slip effects must be included in thesce
cquations when Kn > 0.03. The eflects of free molecular flow begin around a
vittue of Kn = 1, and extend out to the limit of Kn becoming infinite. [Hence, the
transitional regime is essentially contained within 0.03 < Kn < 1.0. In a given
problem, the Knudsen number is the criterion to examine in order to decide if
low-density effects are important, and to what extent. For example, if Kn is very
small, we have continuum flow; if Kn is very large, we have {ree molecular flow,
and so forth. A hypersonic vehicle entering the atmosphere from space will en-
counter the full range of these low-density effects, down to an altitude below
which the full continuum acrodynamics takes over. Because Kn = i/L is the
governing parameter, that altitude below which we have continuum flow 1s
greater or lesser as the characteristic length L is larger or smaller. Hence, large
vehicles experience continuum flow to higher altitudes than small vehicles.
Morcover, if we let the characteristic length be a running distance x from the
nosc or leading cdge of the vehiele, then Kn = A/x becomes infinite when x = 0.
Hencee, for any vehicle at any altitude, the flow immediately at the leading edge
is governed by low-density cffects. For most practical applications in acrody-
namics, this leading cdge region is very small, and is usually ignored. However,
for high-altitude hypersonic vehicles, the proper treatment of the lecading edge
flow by low-density methods can be important.

To consider low-density cliects as part of the “definition” of hypersonic
acrodynamics may be stretching that definition too much. Recall that we are
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defining hypersonic aerodynamics as that regime where certain physical flow
phenomena become progressively more important as the Mach number is in-
creased to high values. Low-density effects are not, per se, high Mach number
effects. However, low-density effects are included in our discussion because some
classes of hypersonic vehicles, duc to their high Mach number, will fly at or
through the outer regions of the atmosphere, and hence will expericnce such
effects to a greater or lesser extent.

E. Recapitulation

To repeat, hypersonic flow is best defined as that regime where all or some of
the above physical phenomena become important as the Mach number 1s in-
creased to high values. To help reinforce this definition, Fig. 1.20 summarizes

T~ High-temperature effects
// \\ Vibrational excitation: y = f(T)
/ g \ Chemical reactions: y = f(T, p)
(/ \‘ Nonequilibrium flow

\
e, /
\\ \\,_ Y,
~ s At high altitudes—
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M, > L N
_

—_T e
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T
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~
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FIGURE 1.20

Physical effects characteristic of hypersonic flow.
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the important physical phenomena associated with hypersonic flight. Through-
out this book, the fundamental aspects and practical consequences of these phe-
nomena will be emphasized.

1.4 HYPERSONIC FLIGHT PATHS;
THE VELOCITY-ALTITUDE MAP

Although this is a book on hypersonic and high-temperature gas dynamics, we
must keep in mind that the frequent application of this material is to the design
and understanding of hypersonic {light vehicles. In tarn, it is helpful to have
some knowledge of the flight paths of thesc vehicles through the atmosphere,
and the parameters that govern such flight paths. This is the purposc of the
present section. In particular, we will examine the flight path of lifting and non-
hifting hypersonic vehicles during atmospheric entry from space.

Consider a vehicle flying at a velocity V along a flight path inclined at the
angle 0 below the local horizontal, as shown in Fig. 1.21. The forces acting on
the vehicle are lift L, drag D, and weight W the thrust is assumed to be zero.
hence we are considering a hypersonic glide vehicle. Summing forces along and
perpendicular to the curvilinear flight path, we obtain the following equations of
motion from Newton’s sccond law:

1V
Along flight path: Wsinf —D=m (/{ (L)
a

. v?
Perpendicular to flight path: L — Wsinl = —m 3 (1.2)

FIGURE 1.21
Foree diagram for reentry body,
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In Eq. (1.2), R 1s the local radius of curvature of the flight path. For most entry
conditions, ¢ is small, hence we assume sin = 0, and cos 8 ~ |. For this case,
Egs. (1.1) and (1.2) become, noting that m = W/g:

Wd
—D:I—»d»‘t-/ (1.3)
g
w 2
L—W:;»‘V/Rf (1.4)
g

The drag can be expressed in terms of the drag cocfficient Cp, as D = $pV?SC,,
where p is the free-stream density and S is a reference area. Hence, Eq. (1.3)
becomes

1 wdv
— - pV3ESCp = — -~
2 g dt
Rearranging, we obtain
1dv W\ pr?
S £ (1.5)
g dt CpS 2

In Eq. (1.5). W/C,S is defined as the ballistic parameter: it clearly influences the
flight path of the entry vehicle via the solution of Eq. (1.5). For a purely ballistic
reentry (no lift), W/C,S is the only parameter governing the flight path for a
given entry angle.

Returning to Eq. (1.4), and expressing the lift in terms of the 1ift cocflicient
C, as L= !pV3SC,, we obtain

, w2
- pVSCL — W= —-~—
g R
Rearranging,
1v? W\ pv?
1 — (7 P (1.6)
g R C.S 2

In Eq. (1.6), W/C, S is the lift parameter; it clearly influences the flight path of a
lifting entry vehicle via the solution of Eq. (1.6).

Equations (1.5) and (1.6) illustrate the importance of W/C,S and W/C, S
in determining the flight path through the atmosphere of & vehicle returning
from space. Such flight paths arc frequently plotted on a graph of altitude versus
velocity—a relocity-altitude map, an example of which is shown in Fig. 1.22.
Here, two classes of flight paths are shown: (1) lifting entry, governed mainly by
W/C,. S, and (2) ballistic entry, governed mainly by W/C,S. The vchicle enters
the atmosphere at either satellite velocity (such as from orbit), or at escape ve-
locity (such as a return from a lunar mission). As it flies decper into the atmo-
sphere, it slows due to aerodynamic drag, giving rise to the flight paths shown in
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Satellite Escape
velocity velocity

!

Lifting entry

WIC,S = 10 Ib/ft> ——
100 1b/ft?
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W/C,S = 23 b2 —
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TGURE 1.22

\tmospherie entry light paths on a velacity-altitude map.

“ig. 1.22. Note that vehicles with larger values of W/C, S and/or W/C,S pene-
rate deeper into the atmosphere belore siowing. The lifting entry curve for
W/C, S = 1001b/{t* pertains approximatcly to the space shuttle; the curve
nitinted at escape velocity with W/CpS = 100 Ib/ft* pertains approximately to
e Apollo entry capsule. Velocity-altitude maps are convenient diagrams to
Hustrate various aerothermodynamic regimes of supersonic flight, and they will
se used as such in some of our subsequent discussion.

1.5 SUMMARY AND OUTLOOK

Fhe major purposes of this chapter have been motivation and orientation—
notivation as to the importance, interest and challenge associated with hyper-
onic aerodynamics, and orientation as to what hypersonics entails, For the
-cmainder of this book, our purpose is to present and discuss the important
‘undamental aspects of hypersonic and high-temperature gas dynamics, and to
rightight various practical applications as appropriate. Towards this end. the
nook is organized into three major parts, as diagramed in Fig. 1.23, These three
parts are as lollows:

Part I Jnviseid Flow. Tlere, the purely fluid dynamic effect of large Muach
aumber is ¢mphasized, without the added complications of viscous and high-
temperature effects, In this part, we cxamine what happens when the free-strcam
Mach number M, becomes large, and how this influences aerodynamic theory
at high Mach numbers,
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Part [1 —Viscous Flow. Here, the combined efffect of high Mach number
and finite Reynolds number will be examined. The purcly Quid dynamic effect of
hypersonic flow with friction and thermal conduction will be presented: again,
high-temperature cffeets will not be included.

Part [11 —High-Temperature Flow. Here, the important aspects of high-
temperature gas dynamics will be presented. Emphasis will be placed on the
development of basic physical chemistry principles, and how they affect both
inviscid and viscous flows. High-temperature flows find application in many
ficlds in addition to hypersonic aerodynamics, such as combustion processes,
explosions. plasmas, high-energy lasers, ctc. Therefore, Part 11 will be a self-
contained presentation of high-temperature gas dynamics in general, along with
pertinent applications to hypersonic {low.

Figure 1.23 is a block diagram showing each one of the three parts discussed
above, along with the major items to be discussed under each part. In essence,
this figure is a roadmap for our excursions in hypersonic and high-temperature
gas dynamics. Figure 1.23 is important, and we will refer to it often in order
to sce where we are, where we have been, and where we are going in our
presentation.

PROBLEMS

1.1. Consider the supersonic and hypersonic flow of air (with constant ratio of specific
heats, y = 1.4) over a 20° half-angle wedge. Let 0 denote the wedge half angle, and f8
the shock-wave angle. Then f-0 is a measure of the shock-layer thickness. Make a
plot of -0 versus the free-stream Mach number, M, from M, = 2.0 to 20.0. Make
some comments as to what Mach number range results in a “thin™ shock layer.

1.2. The lifting parameter W/C,S is given in Fig. 1.22 in units of 1b/ft*>. Frequently, the
analogous parameter m/Cp, S is used, when m is the vehicle mass; the units of m/Cj,S
are usually given in kg/m?. Derive the appropriate conversion between these two sets
of units, i.e., what number must W/C,S expressed in Ib/ft* be multiplied by.to obtain
m/C S in kg/m?? (Comment : Even at the graduate level, it is useful now and then to
go through this type of exercise.)



PART

INVISCID
HYPERSONIC
FLOW

In Part T we emphasize the purely fluid dynamic effects of high Mach
number; the complicating effects of transport phenomena (viscosity, thermal
conduction, and diffusion) and high-temperature phenomena will be treated in
Parts IT and HI respectively. In dealing with inviscid, hypersonic flow in Part I,
we are simply cxamining the question: What happens to the fluid dynamics of
an mviscid flow when the Mach number is madc very large? We will sce that
such an examination goes a long way toward the understanding of many practi-
cal hypersonic applications.

An
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It is clear that the thorough study of gas-dynamic discontinuities
and their structures combines in an essential way the fields of hy-
drodynamics, physics, and chemistry, und that there is no lack of
problems which deserve attention.

Wallace D. Hayes, Princeton University, 1958

31



32 INVISCID HYPERSONIC TLOW

2.1 INTRODUCTION

Consider an airplane flving at Mach 28 at the outer regions of the carth’s atmo-
sphere, say at an altitude of 120 km (approximately 400,000 ft). Upon descent
into the lower regions of the atmosphere, the aircraft may follow one of the
lifting trajectories shown on the altitude-velocity map in Fig. 2.1%. Superimposed
on this figure are lines of constant Mach number. The purpose of this figure is
to emphasize the obvious fact that such hypersonic vehicles encounter cxcep-
tionally high Mach numbers. Morcover, the flight path remains hypersonic over
most of its extent. Figure 2.1 justifies the study of high Mach number flows, and
underscores the question: what happens in a purely fluid-dynamic sense when
the Mach number becomes very large? This question has particular relevance in
regard to the basic shock- and expansion-wave relations. In the present chapter,

km

Lifting reenlry from orbit

100

Orbiter
US-shuttle

S0

L S0 E S (NS E U R Wvm—
0 1 2 3 4 5 6 7 8 9 10 km/s
V—

FIGURE 2.1

Velocity-altitude map with superimposed lines of constant Mach numbper.

T Velocity-altitude maps are discussed in See. 1.4, In that section, 1he parameters W/CpS and
W/C, S are introduced. Retated parameters are m/C,S and m/C, S where m is the mass of the
vehiele, Frgure 2.1 is shown m terms of ST units, and the lift parameter s couched m terms of m
rather than W, In comparing values of W/C, S and m/C,S; for example, note that m/C,S (in
kg/m¥) = 5 x W/C,$ (i /1), re, a value of W/C, 8= 1000 1b/I* is cqual lo m/C,S =
S000 kg/m?. The same ratio heolds, of course, for W/C,S and m/CpS.



HYPERSONIC SHOCK AND EXPANSION-WAVE RELATIONS 33

we will obtain and cxamine the limiting forms of both the conventional shock-
wave cguations and the Prandt-Meyer expansion-wave relations when the
upstream Mach number increases toward infinity. These limiting forms are inter-
esting in their own right: however, of more importance, they are absolutely nec-
essary for the dcvelopment of various inviscid hypersonic theorics to be
discussed in subsequent chapters.

2.2 BASIC HYPERSONIC
SHOCK RELATIONS

Anytime a supcersonic flow 1s turned into itsell (such as flowing over a wedge,
cone, or compression corner), a shock wave is created. Also, if a sufficiently high
back-pressure is created downstream of a supersonic flow, a standing shock
wave can be established. Such shock waves are extremely thin regions (on the
order of 1077 ¢m in air) across which large changes in density, pressure, veloci-
ty, etc., occur. These changes take place in a continuous [ashion within the
shock wave itsell, where viscosity and thermal conduction are important mech-
anisms. However, because the wave is usually so thin, to the macroscopic ob-
server the changes appear to take place discontinuously. Therefore, in
conventional supersonic aerodynamics, shock waves are usually treated as math-
ematical and physical discontinuities. As the Mach number is increased to hy-
personic speeds, no dramatic qualitative difference occurs. The same exact shock
relations which are obtained in supersonic aerodynamics also hold at hypersonic
speeds. However, some interesting approximate and simphfied forms of the
shock relations arc obtained in the limit of high Mach number; these forms are
obtained below.

Consider the flow through a striught oblique shock wave, as sketched in
Fig. 2.2. Upstrcam and downstream conditions are denoted by subscripts 1 and
2, respectively. For a calorically perfect gas (constant specific heats, hence » =
¢ /¢, = constant), the classical results for changes across the shock are given in
any standard textbook on compressible flow (see, for example, Refs. 4 and 5). To
begin with, the exact oblique shock relation for pressure ratio across the wave is
give by

2y A
Exact o T MEsin? 1) 2.1

where 3 is the wave angle. shown in Fig. 2.2, In the limit as M, goes to infinity,
the term M7 sin? f#» 1, and hence Eg. (2.1) becomes:

2 2y 5 . o9
as M, — oo P2 ) Misin®g 2.2)

P v




34 INVISCID HYPERSONIC FLOW

M, = V/fa,

P2

M, =V,/a,

FIGURE 22
Oblique shock-wave geometry,
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In a similar vein, the density and temperature ritios are:

pzA (V+I)M §1r1 /3

Exact o, —HM? sin? /3 +2

asM;—-
TZ (plepj) (From the equation of state: p = pRT)
T (pafp)

as M, —» o 7f? = 2(2(141)7 M3 sin® 8

(2.4)

(2.5)

Returning to Fig. 2.2, note that u, and v, are the components of the flow veloc-
ity behind the shock wave parallel and perpendicular to the upstream flow (not
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parallel and perpendicular to the shock wave itsell, as is frequently done). With
this in mind,

2 sz' 2 B —
Exact vz _ g 2Mysn - 1) 2.6)
Vi (r+ )My
U, 2sin? B
M, - Z=1-"T. 1L 27
as M, - o© v, S 2.7
Bxacr v AMisn ot cotp 3
v, G+ DM}
For large M. Eq. (2.8) can be approximated by
b AMYsin® freot f_ 2sin foos 2.9)
V, (y + HM] y+1
Since 2 sin ff cos f = sin 2§, then from Eq. (2.9):
as My — oo (2.10)

In the above, the choice of velocity components parallel and perpendicular to
the upstream flow direction rather than to the shock wave is intentional. Equa-
tions (2.7) and (2.10) will be used to great advantage in subsequent chapters to
demonstrate some physical aspects of the velocity field over slender hypersonic
bodies.

Note from Egs. (2.2) and (2.5) that both p,/p, and T,/T, become infinitely
large as M, — . In contrast, from Eqs. (2.4), (2.7), and (2.10), p,/p,. ,/V}. and
v,/V, approach limiting finite values as M; — oo.

In acrodynamics, pressure distributions are usually quoted in terms of the
nondimensional pressure coeflicient, C,, rather than the pressure itself. The pres-
sure coeflicient is defined as

Pa— Dy

c, 0" .10
where p, and g, are the upstream (frce-strcam) static pressurec and dynamic
pressure respectively. (In later chapters we will use the subscript oo to denote
{ree-stream conditions. such as free-stream pressure p,, and free-stream dynamic
pressure ¢,.. However, consistent with standard shock-wave nomenclature, we
denote the free-stream conditions by the subscript 1 in the present section.) By
definition, the dynamic pressure is given by

a1 = ;‘_prf
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This is a definition only—it is used for all flows, from incompressible to hyper-
sonic. (Note: For incompressible flow, g, = 3p, V31 is exactly the difference be-
tween the total and static pressure of the [ree stream; for all other acrodynamic
speed regimes, g, = 5p,V? is a definition only, with no exact physical signifi-
cance.) In high-speed flow theory, it is convenient to express ¢, in terms of
Mach number and pressure, M, and p,, rather than velocity and density, V| and
py. This is easily accomplished by recalling that the speed of sound a, =
\/ypl/p{, and that the Mach number M, = V,/a,. Hence
ar 2
qy = ;MV% = ’2[’11/% %g‘z = !%1’ ’Z’lzl
or

q, :é—p,M% (2.12)

Fquation (2.12) is a very convenient expression for dynamic pressure, and can
be viewed almost as an alternate definition of ¢,. We can now write the pressure

cocflicient as:
, — 2
c P - Pa (2.13)
! 1 yMy\p,

Combining Eqs. (2.1} and (2.13), we obtain an exact relation for C, behind an
oblique shock wave as follows:

4 s 1
Exact C,= 1 <sm“ f— \/12> (2.14)
b My

In the hypersonic linut:

as M, -« C,= <T_ I) sin’ f} (2.15)

r

The relationship between Mach number M, shock angle 8, and deflection angle
0, is expressed by the so-called 0-3-M relation (sece Refs. 4 and 5):
MZsin?f 1 :|

Exact tan (0 = 2 cot /}[4—7 Y™

.- 2.16
M3y 4 cos 2f) + 2 (2:16)

This relation is plotted in Fig. 2.3, which is a standard plot of wave angle versus
deflection angle, with Mach number as a parameter. From this figure, note that,
in the hypersonic limit, when 0 is small, 8 is also small. Hence, in this limit, we
can insert the usual smalt-angle approximations into Eq. (2.16)

sin ff =~ f8
cos2f = 1

tan 0 =sin 0 = 0
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Shock-wave angle f, degrees

Deflection angle 0, degrees

FIGURE 2.3
0-p-M diagram,

resulting in

2 MipP—1
6="1— -1 (2.17)
BIMiGy+1+2
Applying the high Mach number limit to Eq. (2.17), we have
2 MZ 2
p=2] MiF (2.18)
BLMi(r+1)

In Eq. (2.18) M, cancels, and we finally obtain in both the small-angle and
hypersonic Hmits:

as M, - w

and (2.19)

0 hence {3 is smatl

Note that for y = 1.4,
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It is interesting to obscrve that, in the hypersonic limit for a slender wedge, the
wave angle is only 20 pereent larger than the wedge angle—a graphic demon-
stration of a thin shock layer in hypersonic flow. (Check Tig. 1.13, drawn from
exact oblique shock results, and note that the 187 shock angle is 20 percent
larger than the 15" wedge angle at Mach 36--truly an cxample of the hyper-
sonic limit.)

I‘or your convenience, the limiting hypersonic shock relations obtained in
this section are summarized in Fig. 2.2. These limiting relations, which arc
clearly simpler than the corresponding exact oblique shock relations, will be
important for the development of some of our hypersonic aerodynamic tech-
niques in subscquent chapters.

23 HYPERSONIC SHOCK RELATIONS
IN TERMS OF THE HYPERSONIC
SIMILARITY PARAMETER

In the study of hypersonic flow over slender bodies, the product M0 is an
important governing paramecter where, as before, M, is the {ree-strecam Mach
number and 6 is the flow deflection angle. Indeed, we will demonstrate in Chap.
4 that M,0 is a similarity parameter for such flows. Denoting M0 by K, we
state:

K = M0 = hypersonic similarity parameter

In our future discussions, it will be helpful to express the oblique shock relations
in terms of K, particularly in the case of pressure ratio p,/p,. This is the purpose
of the present section.

Return to the exact 0-8-M relation given by Eq. (2.16). As expressed,
this is an explicit relation for 0 = 0(f)). Obtaining the exact inverse relation,
B =P, from Eq. (2.16) 1s not possible. However, in the combined limit of
hypersonic low and small angles, an approximate explicit relation for 8 = f(0)
can be obtained. This will be our first step toward introducing K = M0 into
the shock relations. Specifically, for small angles, Eq. (2.16) reduces to Eq. (2.17),

rewritten below as:
- M3y + 1
M2 ] = [ —‘%——f——) + l}/%) 221

In Bq. (2.21), assume that M, is large and finite, hence (y + HMT > . How-
ever, since*f is small, we cannot assume that M? 2 is large compared to unity.
With this, Fq. (2.21) becomes

vl
’; M2BO (2.22)

B y+1/p !
)y - Uy = 2.2
<()> 2 (0) M30? 0 (2:2)

MR~ 1 =
Rearranging, we obtain
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This is a quadratic equation in terms of f/0; solving by means of the quadratic
formula:

g+ /";5;L N
- S 224
A AN A I B VEIE (229

[In Eq. (2.24), the minus sign on the radical has been ruled out; it would pro-
duce the nonphysical result of a negative f3/0.] Note: Equation (2.24) is the
desired cxplicit refation for = f5(0), good for the limit of hypersonic Mach
numbers and small angles.

Now return to Eq. (2.1), which is an exact relation for the pressure ratio
across an oblique shock wave. Assuming small angles, this becomes

P2l g (2.25)
Py y+ 1

If we wish to apply Eq. (2.25) at hypersonic but finite Mach numbers, we repeat
again that, although M is large, the product M, mayv not be large; hence for
this case, I'q. (2.25) cannot be reduced further. However, within the {framework
of these assumptions, Eq. (2.24) gives an explicit relation for ff = g(0), which can
be introduced into Eq. (2.25) to obtain an expression for p,/p; in terms of the
deflection angle 0. This is carried out as {ollows. Combining Eqs. (2.22) and
(223),

PN v+t y_iﬁ+b1’ 1
0) T 3| i) T | T M

or,

o [G+DEED v+ [y ¥ 1N 1 i
2 oM T I T g .
J; [ 5 it ) T e (2.26)

Substituting Eq. (2.26) into (2.25), we obtain
P O+ 1), RN
=14 T 0y R0 o M20? 227
Py o TUTUE) Tze ™ @27)

Again denoting M0 by K, Eq. (27) is written as

Ps G+, NeEa
=1 L LK+ 9K — - 2.28
. +, y : + 25 (2.28)

Equation (2.28) is the desired result; it gives the pressure ratio across an oblique
shock wave in terms of the hypersonic similarity parameter, subject to the com-
bined assumptions of high (but finitc) Mach number and small angles. Since the
pressure ficld behind a two-dimensional oblique shock is constant, Eq. (2.28)
also gives the pressure, p,, on the surface of a wedge of deflection angle 0.
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To round out our present discussion associated with the hypersonic simi-
larity parameter, consider the pressure coefficient, defined in Eq. (2.13). Substi-
tuting £q. (2.28) into (2.13), we obtain

2 Mo+ 1), N\
C,=-—, | == ~K*’+7yK = + —5
" yM;[ 4 !

or, multiplying and dividing by 02,

2¢)? w(y + 1) N 5 v+ 02 1
= S L KE 4+ yK” - -
c, e { i K )t Kz]
v+ 1 P+ 11
= 20~ “—— L — o)
C, =20 [ 4 + /< a > + -5 (2.29)

Note from Eq. (2.29) that, for hypersonic flow over wedges with small deflection
angles,

or

(f);” = [(K,y) (2.30)
We will find later that relations analogous to Eq. (2.30) abound in the theory of
hypersonic flow over stender bodies.

24 HYPERSONIC EXPANSION-
WAVE RELATIONS

Consider the centered Prandtl-Meyer expansion around a corner of deflection
angle 0, as sketched in Fig. 24. An expansion fan consisting of an infinite
number of Mach waves originates at the corner, and spreads downstream. The

FIGURE 24
Centered expansion wave.
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Mach number and pressure upstream of the wave are M, and p,, respectively;
the corresponding quantities downstream of the wave are M, and p, respective-
ly. From basic compressible flow (sce, for example, Refs. 4 and 5), the relation
between 0, M,, and M, is given by

0= ¥(M,) — w(M) @231
where 1 is the Prandtl-Meyer function

(M) = \/' ;71' [Lun"\/{é—_’ff (M? — l)il —tan" ' /M? —1 (2.32)
7 7

hypersomu flow as

1 1
H(M) = /—’-J“ tan” /’--‘ M—tan™' M (2.33)
y—1 7+

Recalling the trigonometric identity

1
an 'x =" —tan~! <—> (2.34)
2 X

and the scries expansion

! ) T S L 2.35)
‘ )T T e T 2

we obtain by combining Egs. (2.34) and (2.35),

P 236
T2 x 33 5x5+7x7 ' (2.36)

Utilizing Eq. (2.36) to expand Eq. (2.33), we have

+ 1 y+ 11 1
\(AI)~\//_]<2 \/y_]'M-l- >*<§AM+> (2.37)

At high Mach number, the higher-order terms associated with Eq. (2.37), i.c.,
terms such as 1/3M?, 1/5M?, etc., can be ignored. For this case, Eq. (2.37) yields

+1in Y+ 1 w1
My= |- [ B S . 23
v = / ~12 <~,~—1>M 2 M (239

Substituting Eq. (2.38) into (2.31), we obtain, for hypersonic Mach numbers:
_ y+ 1t 1 + v+ 1\
M, \y—1) M, M, \y—1)M,

2 /1 1
A S 2.3
0 yq(Ml M2> (2.39)

tan—

~2

or
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ation (2.39) is the hypersonic relation for Prandtl-Meyer expansion waves: it
1 approximate relation which becomes more accurate as M, and M, become
or. Recall that M increases through an expansion wave, hence 8 in Eq. (2.39)
positive quantity. This is consistent with the sketch shown in Fig, 2.4 where
deflection angle ¢ is treated as a positive quantity.

The flow through an expansion wave is isentropic, hence the isentropic
sure relation holds as follows (again see for example, Refs. 4 and 5)

P _ (14— D2MEemD (2.40)
Py \L+(—D2M; '

large Mach numbers, the hypersonic approximation for Eq. (2.40) becomes

R M A\2ZO-D
[1:~ = <M1’) (2.41)
1 2
rranging Eq. (2.39), we obtain
M — 1
'\q" =1 Lf M0 (2.42)
VL5

nbining Eqs. (2.41) and (2.42), the pressure ratio across the expansion wave,
1ypersonic speeds, becomes

v — ] 2y/y—1)
iﬁ - <1 - ’,2\7 M11)> (2.43)
1

ining, as before, M,0 as the hypersonic similarity paramecter K, Eq. (2.43)
be written as

) 1 20ty ~ 1)
Pa_(y 7T Nk (2.44)
Py 2

uation (2.44) is, for the expansion wave, the analog of Eq. (2.28) for the shock
ve. In both cases, the pressure ratio p,/p; is a function of K and y. However,
iercas Eq. (2.28) for the shock wave assumed both high Mach number and
wll angles, Eq. (2.44) for the cxpansion wave assumes only high Mach
mber; Eq. (2.44) is not restricted to small angles.

Finally, the pressure coefficient C,, is, from Egs. {2.13) and (2.44)

2 N 2 ] 2y — 1)
C= ()= 7 (1773 K —1
yMi A\ p, yMy 2

Aultiplying and dividing the right-hand side by 0%, we obtain

242 »— | 3 29y~ 1)
Co= 2 KI -, 1\> - JJ (2.45)
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Equation (2.45) for the hypersonic expansion wave is analogous to Eq. (2.29) for
the hypersonic shock wave. Indeed, analogous to Eq. (2.30), Eq. (2.45) gives the
result, now becoming familiar, that

c
pf = JEKD (2.40)

for the hypersonic expansion wave.

2.5 SUMMARY

The conventional shock wave and expansion-wave relations from basic compres-
sible flow take on simplified but approximate forms at hypersonic Mach
numbers. The more important of these forms are listed below.

Shock Waves

In the limit as M| —»

P2 2y 2 o2
= =—-" Mj%sin 22
V= Misin® B 2)
) P+ 1
Pa 741 (2.4)
proy— 1
uy . 2sin’f 2.7
14 y+ 1
P2 _sin 28 (2.10)
Vi v+t
C Y\ i (2.15)
= - ) sin® A3
Al 11
In the combined limit, as M, — ¢ and small angles,
fooy+1 5
=10 2.19
0 2 @19

Defining the hypersonic similarity parameter as M, = K, we have, in the
intermediate case of high but finite Mach number and small angles,

P 7+ 1) v+ N
— PR k2 (DT -, 228
» +0 + /< i + 2 (2.28)

L+t ZES
C,=20%|"—— —_ 2.29
= ) ] a2
c,

Note - 7= f(K.y) (2.30)

0
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Expansion Waves

In the case of high but finite Mach numbers we have

2 1 1
0=---- — (2.39)
y—L\M, M,
where 0 is the deflection angle and M, and M, are the Mach numbers upstream
and downstream df the expansion wave. Also, for the same assumption,

. , 1 \2¥e-1D)
pa_(y_r=1 1<> (2.44)
Py 2
where K = M0
202 y — 1 2yity— 1)
= =1k —1 245
C, K2 [<1 5 > } (2.45)
Cl’
Note: 2= S, (2.46)

PROBLEM

2.1. Starting with the basic continuity, momentum, and energy equations for
flow across an oblique shock wave (see, for example, Ref. 4), derive Eqgs.
(2.6) and (2.8). Note that v, and v, in these cquations are the velocity com-
ponents behind the shock parallel and perpendicular to the upstream veloci-
ty respectively—not parallel and perpendicular to the shock wave as is
usually taken in most standard shock-wave derivations.
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Newton's ideas are as old as reason and as new as research.

J. C. Hunsaker, comments to the Royal Society,
Cambridge, England, at the occasion of
the Newton Tercentenary Celebration, July, 1946

A striking difference berween linear and nonlinear waves concerns
the plienomenon of interaction: the principle of superposition holds
Sor linear waves but not for nonlinear waves. As a consequence, for
example, excess pressures of interfering sound waves are merely
additive: in contrast to this fact, interaction and reflection of
nonlinear wares may lead 10 enormous increases in pressure.

Richard Courant and K. O. Fredericks, 1948

45
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3.1 INTRODUCTION

Hypersonic flow is inherently nonlinear. This is intuitively obvious when we
think of the important physical aspects of hypersonics discussed in Chapter
1- -aspeets such as high-temperature chemically reacting flows, viscous interac-
tion, entropy layers, etc. It is hard to imagine that such complex phenomena
could be described by simple linear relationships. Even without these consider-
ations, the basic theory of inviscid compressible flow, when the Mach number
becomes large, does not yield aerodynamic theories which are mathematically
linear. This is in stark contrast to supersonic flow which, for thin bodies at smal
angles of attack, can be described by a linear partial differential equation, lead-
ing to the familiar supersonic expression for pressure coefficient on a surface (or
streamline) with local deflection angle 0:

20

= 3.0
TUME

In Eq. (3.1), M, is the free-strcam Mach number. Equation (3.1) is a classic
result from inviscid, linearized, two-dimensional, supersonic flow theory (sce. for
example, Refs. 4 and 5). 1t is simple, and easy to apply. Unfortunately, it is not
valid at hypersonic speeds, for reasons to be discussed in Chapter 4.

A virtue of Bq. (3.1} is that, for a specified free stream Mach number, it
gives the pressure coeflicient on the surface of a body strictly in terms of the
focal deflection angle of the surfuce, 0, that is, within the framework of supersonic
linearized theory, C, at any point on a body does not depend on the details of
the flowfield away from that point, thus it does not require a detailed solution of
the complete flowfield. In essence, Eq. (3.1) provides a local surfuce inclination
method for the prediction of pressure distributions over two-dimensional super-
sonic bodies (restricted to thin bodics at small angles of attack). Such simplicity
is always welcomed by practicing acrodynamicists who have to design flight
vehicles. This leads to the question: Although hypersonic aerodynamics is non-
lincar, and hence [q. (3.1) does not hold, arc there other methods, albeit ap-
proximate, which allow the rapid estimate of pressure distributions over
hypersonic bodies just in terms of the local surface inclination angle? In other
words, s there a viable “local surface inclination method” for hypersonic appli-
cations? The answer is yes; indeed, there are several such methods which apply
to hypersonic bodies. The purpose of this chapter is to present these methods.

Finally, examine the roadmap given in Fig. 1.23. Note that the material
discussed in Chap. 2, as well as the present chapter, is itemized on the far left
side of the roadmap. Keep in mind that we are still discussing inviscid hyper-
sonic flow, where essentially we are examining the purely fluid dynamic effect of
large Mach numbers.

C

32 NEWTONIAN FLOW

Three centurics ago, Isaac Newton cstablished a fluid dynamic theory which
later was used to derive a “law” for the force on an inclined plane in a moving
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fluid. This law indicated that the force varies as the square of the sine of the
deflection angle—the famous newtonian “sine-squared law.” Experimental inves-
tigations carried out by d’Alembert more than a half-century later indicated that
Newton's sine-squarcd law was not very accurate and, indeed, the preponder-
ance of fluid dynamic experience up to the present day confirms this finding. The
exception to this is the modern world of hypersonic aerodynamics. Ironically,
newtonian theory, developed 300 years ago for the application to low-speed
fluid dynamics. has direct application to the prediction of pressure distributions
on hypersonic bodies. What is the application, and why? The answers are the
subject of this scction.

In Propositions 34 and 35 of his Principia, first published in 1687, Newton
modeled a fluid flow as a stream of particles in rectilincar motion, much like a
strcam of pellets from a shotgun blast which, when striking a surface, would lose
all their momentum normal to the surface but would move tangentially to the
surface without toss of tungential momentum. This picture is illustrated in Fig,
3.1, which shows a stream with velocity V,, impacting on a surface of arca A
inctined at the angle 0 to the free stream. From this figure, we see that:

(Change in normal velocity) = Vgqsinl

{Mass (ux incident on a surface arca A} =poV,Asinl

{Time rate of change of momentum of this mass flux} = (p,, V., 4 sin 0)(V,, sin 0)
=p,ViAsin® 0

From Newton's second law, the time rate of change of momentum is equal to
the force F exerted on the surface

F=p, V2 Asin*0

or. g =p, V32 sin? 0 (3.2)
The force F in Eq. (3.2) requires some interpretation. Newton assumed the
stream of particles to be rectilinear, i.e., he assumed that the individual particles
do not mteract with cach other, and have no random motion. Due to this lack
of random motion, F in Eq. (3.2) i1s a force associated only with the directed
linear motion of the particles. On the other hand, modern science recognizes

Asin 0
i

(a)

FIGURE 3.1
Schematic for newtonian impact theory.
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that the static pressure of a gas or liquid is due to the purely random motion of
the particles  motion not included in newtonian theory. Hence, in Eq. (3.2).
FiA, which has the dimenstons of pressure, must be interpreted as the pressure
difference above the free-stream static pressure, namely

F

A=I’_Poo

where p is the surface pressure, and p , is the free-stream static pressure. Hence,
from Eq. (3.2)

P =Dy = Py, V2 sin? 0

or
P~ Px s a2
T =2sin* 0
Ve
or
C,=2sin?{ (3.3)

Lquation (3.3) is the famous newtonian sine-squared law for pressure coeflicient.

What does the newtonian pressure coefficient have to do with hypersonic
flow? To answer this question, recall Fig. 1.13 which illustrated the shock wave
and thin shock layer on a 15 degrec wedge at Mach 36. An elaboration of this
picture is given in Fig. 3.2, which shows the streamline pattern for the same
Mach 36 flow over the same wedge. Here, upstream of the shock wave, we see
straight, parallel streamlines in the horizontal free-stream direction; downstream
of the shock wave, the streamlines are also straight but parallel to the wedge
surface inclined at a 15-degree angle. Now imagine that you examine Fig. 3.2
from a distance, say {rom across the room. Because the shock wave lies so close
to the surface at hypersonic speeds, Fig. 3.2 “looks” as if the incoming flow is
directly impinging on the wedge surface, and then is running parallel to the
surface downstream—precisely the picture Newton drew in 1687. Therefore, the
geometric picture of hypersonic flowfields have some characteristics which
closely approximate newtonian flow; Newton’s model had to wait for more than
two-and-a-half centuries before it came into its own. By this reasoning, Eq. (3.3)

FIGURK 32
Streamlines in the thin hypersonic shock layer.
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should approximate the surface pressure coefficient in hypersonic flow. Indeed, it
has been used cxtensively for this purpose since the carly 1950s,

In applying Eq. (3.3) to hypersonic bodics, 0 is taken as the local deflection
angle, i.c., the angle between the tangent to the surface and the free-stream.
Clearly, newtonian theory is a “local surface inclination method™ where C,, de-
pends only on the local surface deflection angle; it does not depend on any
aspect of the surrounding flowfield. To be specific, consider Fig. 3.3a, which
shows an arbitrarily shaped two-dimensional body. Assume that we wish to esti-
mate the pressure at point P on the body surface. Draw a line tangent to the
body at point P; the angle between this line and the free-stream is denoted by (.
Hence, from ncwtoman theory, the value of C, at this point is given by C, =
2sin? . Now consider a threc-dimensional body such as sketched in Fig. 3.3h.
We wish to estimate the pressure at an arbitrary point P on this body. Draw a
unit normal vector n to the surface at point P. Consider the free-stream velocity
as a vector V. Then, by definition of the vector dot product, and using a
trigonometric identity, we obtain

V,n=|V,|cos¢=|V,|sin <’;- (/)> (3.4)

where ¢ is the angle between n and V. The vectors n and V, define a plane,
and in that planc the angle 0 = /2 — ¢ is the angle between a tangent to the
surface and the free-strcam direction. Thus, from Eq. (3.4),

V., n=|V_|sinl
or
in 0 Ver 3.5
sin § = "+ 3.
T (3.5)

@ |

n = unit normal

vector at P
C,=2sin’ 0 g
@
Vm/
—
Two-dimensional body Three-dimensional body
{a) h)

FIGURE 33
(a) Geomelry for newlonian applications in two-dimensional flow; (b) Geometry for newtonian ap-
plications in three-dimensional flow.
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S /
/S
e
C,=2sin"0

{GURE 34
idow region on the leeward side of a body, from newtonian theory.

he newtonian pressure coefficient at point P on the three-dimensional body is
wen C, = 2sin’ 0, where 0 is given by Eq. (3.5).

In the newtonian model of fluid flow, the particles in the frec-stream im-
act anly on the frontal area of the body; they cannot curl around the body and
npact on the back surface. Hence, for that portion of a body which 1s in the
shadow™ of the incident flow, such as the shaded region sketched in Fig. 3.4, no
npact pressure is felt. Hence, over this shadow region it is consistent to assume
wt p=p,,and therefore C, = 0, as indicated in Fig. 3.4.

It is instructive to examine ncwtonian thcory applied to a flat plate, as
ketched in Fig. 3.5. Here, a two-dimensional flat plate with chord length ¢ is at
n angle of attack, «, to the free-stream. Since we are not including friction, and

~
-
24
Vs
FIGURE 35

Flat plate at angle of attack. Illustration of aerodynamic [orces,
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because surface pressure always acts normal to the surface, the resultant acvo-
dynamic force Is perpendicular to the plate. Le. in this case the normal force N
is the resultant aerodynamic force. (For an infinitely thin flat plate, this is a
general result which is not limited to newtonian theory, or cven to hypersonic
flow.) In turn, N is resolved into lift and drag, denoted by L and D respectively,
as shown in Fig. 3.5. According to newtonian theory, the pressure coeflicient on
the lower surface is
.
C,, =2sin"«a (3.6)
and that on the upper surface, which is in the shadow region, is
C,. =0 3.7)
Defining the normal foree cocflicient as ¢, = N/g,, S, where S = (¢)(1), we can
readily calculate ¢, by integrating the pressure coeflicients over the lower and

upper surfaces (sce for example the derivation given in Ref. 5).

I (e
c, = J (C,, —C,)dx (3.8)
CJo

where x 15 the distance along the chord from the leading edge. Substituting Fgs.
(3.6) and (3.7) into (3.8), we obtain

1 .
“w=, (2 sin? a)¢

or
¢, = 2sin o (3.9

From the geometry of Fig. 3.5, we see that the lift and drag coeflicients, defined
as ¢, = L/q, S and ¢, = D/q,, S, respectively, where S = (¢)(1), are given by

¢ =€, COS o (3.10)
and
Cg=C, 8o Gan

Substituting Eq. (3.9) into Eqgs. (3.10) and (3.11), we obtain

¢, = 2 sin” % cos o (3.12)
and
¢g=2sn"a (3.13)
Finally, from the geometry of Fig. 3.5, the hft-to-drag ratio is given by
L
D= cotua (3.14)

[Note that Eq. (3.14) is a general result for inviseid supersonic or hypersonic
flow over a flat plate. For such flows, the resultant acrodynamic force is the
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normal force N. From the geometry shown in Fig. 3.5 the resultant acrody-
numic force makes the angle « with respect to lift, and clearly, from the right
triangle between L, D and N, we have L/D = coto. Hence, Lq. (3.14) 15 not
limited to just newtonian theory.]

The results obtained above for the application of newtonian theory to an
infinitely thin flat plate are plotted in Fig. 3.6. Here L/D, ¢, and ¢, are plotted
versus angle of attack o. From this figure, note the following aspects:

1. The value of L/D incrcases monotonically as « is decreased. Indeed, L/D — o
as o — 0. However, this is misleading; when skin friction is added to this
picture, D becomes finite at & = 0, and then L/D -0 as o — 0.

2. The lift curve peaks at about a ~ 55° (To be exact, it can be shown from
newtonian theory that maximum ¢, occurs at a = 54.7°; the proof of this is
left as a homework problem.) Tt is interesting to note that a & 55° for maxi-
mum lift is fairly realistic; the maximum lift coefficient for many practical
hypersonic vehicles occurs at angles of attack in this neighborhood.

10—
9.0}~ M.o»1 4
80—
7.0~

60—

SO -

el

4.0

20—

Angle of attack o, degrees

FIGURE 3.6
Newtonian results for a flat plate.
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3. Examine the lift curve at low angle of attack, say in the range of « from 0 to
15 degrees. Note that the variation of ¢, with ¢ is very nonlinear. This s in
dircet contrast to the familiar result for subsonic and supersonic flow, where
for thin bodies at small 7, the lift curve is a linear function of x. (Recall, for
example. that the theoretical lift slope from incompressible thin airfoil theory
is 27 per radian.y Hence, the nonlinear lift curve shown in Fig. 3.6 is a
graphic demonstration of the nonlinear nature of hypersonic flow.

Consider two other basic aerodynamic bodies: the circular cylinder of in-
finite span, and the sphere. Newtonian theory can be applied to estimate the

hypersonic drag cocflicients for these shapes; the results are

1. Circular cylinder of infinite span

) D
Ca 4, S

S=12R where R = radius of cylinder
g =3 (from newtonian theory)

2. Sphere
D

C= -

D 4. S

S=nR*  where R = radius of sphere
Cy=1 (from newtonian theory)

The derivations of these drag-coefficient values are left for homework problems.

It is interesting to note that the above results from newtoman theory do
not cxplicitly depend on Mach number. Of course, they implicitly assume that
M is high enough for hypersonic flow to prevail; outside of that, the precise
value of M, does not enter the calculations. This is compatible with the Mach
number independence principle, to be discussed in Chap. 4. In short, this principle
states that certain aerodynamic quantities become relatively independent
of Mach number if M, is made sufficiently large. Newtonian results are the
epitome of this principle.

33 MODIFIED NEWTONIAN LAW

In Ref. 8, Lester Lees proposed a modification to newtonian theory, writing Eq.
(3.3) as

C,=C, sin*( (3.15)

r Pmax
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vhere C, is the maximum value of the pressure coefficient, evaluated at a
tagnation point behind a normal shock wave, i.e.,

e = 22D (3.16)
2.04:0 Voo

vhere pg, is the total pressure behind a normal shock wave at the {ree-stream

Aach number. From exact normal shock-wave theory, the “Rayleigh Pitot tube

ormula” gives (sec Ref. 5)

Po, | O+ DML 7OV -y 4 2yMY G.17)
Pw [ 44ME =20 - 1) e+ B
loting that Sp, V2 = (y/2)p,, M?, Eq. (3.16) becomes
2 Po
C = |2 _ 3.18
M, [pw 18

‘ombining Egs. (3.17) and (3.18), we obtain

2 y 4+ 1PML PN — M2
c, = = u((f ML, T=v+ Mot (3.19)
M [ AYML 20— ) v+l

his refation 1s plotted in Fig. 3.7. Note that, in the limit as M — oo, we have:

s 27y = 1)
e LoD Ea
ax 4y y+l

- 1.839 fory=14
— 2.0 fory =1

quation (3.15), with C
w. Note that:

given by Eq. (3.19) is called the modified newtonian

Pmax

The modificd newtonian law is no longer Mach-number independent. The
cftect of a finite Mach number enters through Eq. (3.19).

As both M, —» o and y— 1, Egs. (3.15) and (3.19) yield C, = 2sin®0.
That 1s, the straight newtonian law is recovered n the limit as M, — o0 and
v 1.

For the prediction of pressure distributions over blunt-nosed bodies, modi-
‘d newtonian, Eq. (3.15), is considerably more accurate than the straight new-
nian, Eqg. (3.3). This is illustrated in Fig. 3.8, which shows the pressure
stribution over a paraboloid at Mach 8. The solid line is an exact finite-differ-
t solution of the blunt-body flowfield (to be discussed in Chap. 5): the solid
mbols are the modified newtonian results from Eqgs. (3.15) and (3.19). Note the
cellent agreement, particularly over the forward portion of the nosc. The
shed hine is the straight newtonian result from Eq. (3.3); it lies 9 percent above
> exact result. The inspiration for Lester Lee’s modification to newtoman
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Pmax

FIGURE 3.7
Variation of stagnation pressure coeflicient with M, and y.

Y
l.ZE :

«  Straight M
\. newtonian —_— b

b=0769Y2 — 10 ¢

N Modified
\<newlonian
Exact time- N
marching results
(from Sec. 5.3)

0 02 04 06 08 1.0 L2 14 16 18 20

FIGURE 38

Surface pressure distribution over a paraboloid at M, = 8.0; po, is the total pressure behind a
normal shock wave at M, = §.0.
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ticory appeurs obvious when examining Fig. 3.8. Clearly, from the proper phys-
ics of the flow, the pressure at the stagnation point on the body is equal to the
stagnation pressure behind a normal shock wave, ie., the pg, given by Eq.
3.17); this yields the exact pressure coeflicient at the stagnation point, given by
iq. (3.19). Therefore, it is rational to simply replace the coeflicient 2 in Eq. (3.3)
with the value C, ., as shown in Eq. (3.15). This forces newtonian theory to be
:xact at the stagnation point, and as can be seen in Fig. 3.8, the variation of C,
away {rom the stagnation point closely follows a sine-squared behavior.

34 CENTRIFUGAL FORCE CORRECTIONS
TO NEWTONIAN THEORY

In the derivation of the straight newtonian law, Eq. (3.3), we considered flow
over a flat surface, such as the model sketched in Fig. 3.1. However, we pro-
ceeded to apply Eq. (3.3) to curved surfaces, such as in Figs. 3.3, 3.4, and 3.8, Is
this theoretically consistent? The answer is no; for flow over a curved surface,
there 1s a centrifugal force acting on the fluid elements which will affect the
pressure on the surface. For an application of newtonian theory to curved sur-
faces which is totally consistent with theoretical mechanics, we must modify the
discussion in Sec. 3.2 to take into account the centrifugal force effects. This is the
purposc of the present scction.

To physically understand the nature of centrifugal force on a flowfield,
consider a fluid element moving at velocity V along a curved streamline with
radius of curvature R, as sketched in Fig. 3.9. The fluid element is experiencing a
radial acceleration V2/R with an attendant centrifugal force in the radial direc-
tion, as also shown in Fig. 3.9. In order to balance this centrifugal force, and
keep the fluid element moving along the streamline, the pressurc p + dp on the
top surface of the element must be larger than the pressure p on the bottom
surface, i.c.,, there must be a positive pressure gradient in the radial direction.
Onc could then theorize that, in the flow over a convex surface, the pressure
would decrease in a normal direction toward the surface. This is a general fluid
dynamic trend, not just limited to newtonian theory. However, it is especially
true for the mechanics associated with the newtonian model. For flow over a
convex surface, we should expect the newtonian pressure to be decreased due to
the centrifugal cffect. This is derived as follows.

Consider Fig, 3.10, which illustrates the newtonian flow over a curved sur-
face. Consistent with the newtonian model, all particles that impact the surface
subsequently move tangentially over the surface in an infinitely thin layer. For
the time being, assume this tayer to have small thickness An; later we will let
An — 0 consistent with the newtonian approximation. Therefore, in Fig. 3.10 we
arc considering a thin layer of flow over the body, bounded by the dashed line
and the body itself. (For clarity of presentation, the thickness of this layer is
greatly magnified in Fig, 3.10.) Consider point i on the body surface. At point i
we wish to calculate the pressure p,. Through point i, consider a streamline
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Centrifugal
force

FIGURE 3.9
Centrifugal force on a fluid element moving along a curved streamline.

FIGURE 3.10
Shock layer model for centrifugal force corrections to newtonian theory.
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wwordinate system, where s and n are coordinates locally tangential and perpen-
licular to the streamline. The radius of curvature of the streamline is R. The
ayer of flow over the body is so thin that we assume R is the same for all the
treamlines crossing the coordinate n drawn from point i over the distance An.
\s a result of this assumption, since the surface at point 718 at the angle 0, with
‘espect 1o the free stream, then the angle at point 2 made by the outer edge of
he layer (dashed line) with respect to the free stream is also ;. Now consider a
streamtube within the layer, as shown by the shaded region in Fig, 3.10. In the
ree stream ahead of the layer, the height of this streamtube is dy, where y is the
:oordinate perpendicular to the free stream, and the velocity is V, . Immediately
1pon entering the layer, the flow direction is assumed to be 0, the local deflec-
ion angle of the body at that location, and the magnitude of the velocity is
V., cosf-—all consistent with the newtonian model. Where the streamtube
crosses the normal coordinate n drawn through point i, the thickness of the
streamtube is din and the velocity is V. Concentrate on this part of the stream-
lube, ie., where it crosses n. At this location, Newton’s second law written in
streamline coordinates for the motion of a fluid element is, in the normal direc-
tion (sce for cxample Ref. 9)

ap  pV?

=== 3.20
on R ( )
tiquation (3.20) states that the centrifugal lorce per unit volume of a fluid ele-
ment, pV/R, is exactly balanced by the normal pressure gradient, dp/én. Inte-
grating Eq. (3.20) across the layer from point i to point 2, we have

[m [ [An [)VZ
ap = -
Jn Jo R

dn (3.21)
Assuming two-dimensional flow, the constant mass flow through the shaded
strcamtube dictates that

PV, dy =pVdn (3.22)

Substituting Eq. (3.22) into (3.21), we obtain

v, FAnCcos 0, N7z
Py — P = J P "oy dy (3.23)
0 R

where the direction of integration now becomes the vertical coordinate y. Note
that the vertical coordinates of points i and 2 are y;, and y, + Ancos 0, respec-
tively. Recall that dy in Eqgs. (3.22) and (3.23) is the incremental height of the
streamtube measured in the free stream, and that all the mass flow through the
scetion of the layer of thickness An above point { originates in the total vertical
extent of the free strcam from the bottom line up to point 2. Hence, in Eq.
(3.23), the limits of integration are taken from y =0 to y = y, + Ancos 0,. Mak-
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ing the assumption of an infinitesimally thin layer, we let An— 0 or, more cor-
rectly. v; » Ancos ;. In this limit, Eq. (3.23) becomes

v . V‘
Py —p = [ 3*}% Vdy (3.24)

v o

We now muake another assumption consistent with the newtonian model. Be-
causc newtonian theory assumes inelastic collisions of the particles with the sur-
face wherein all the normal momentum is lost but the tangential momentum is
preserved. it is consistent to assume that the velocity of any given particle after
collision is constant. Hence, in Fig. 3.10, we assume that the flow velocity along
the shaded streamtube inside the layer is constant, that is, V = V, cos0 along
the streamtube. including the section above point i. With this, and recalling that
R is assumed constant for all streamlines crossing n above point i, Eq. (3.24)
becomes
e

pr—py=t f cos 0dy (3.25)
R 4]

Recall from the definition of radius of curvature that, at point i,

1 1

= — So= 3.26
(d0/ds); (d0/dy); sin 0, (3:26)
Combining Egs. (3.25) and (3.26) and rearranging, we have
, [dON ¥
pi=patpVyl —1|sin0 | cos0dy (327
dy); o

Subtracting p,, from both sides of Eq. (3.27), and dividing by g, we obtain the
pressure coefficient

10 n
C,=C,+ 2( l»> sin OIJ cos 0 dy (3.28)

¢
ay/i 0

Finally, at point 2 the flow is just entering the layer, and is being deflected
through the angle ;; there is no centrifugal effect at this point, and hence from
newtonian theory the pressure coefficient at point 2 must be interpreted as the
straight newtonian result given by Eq. (3.3), namely 2sin? (,. With this, Eq.
(3.28) is written as

10 »
C, =2sin? 0, + 2(‘ > sin o,f cos 0 dy (3.29)
' dy/, 0

Equation (3.29) is the newtonian pressure coefficient at point i on a curved
two-dimensional surface taking into account the centrifugal force correction. The
first term on the right-hand side is the straight newtonian result; the second
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term is the theoretically consistent correction for centrifugal effects. An analo-
gous cquation for axisymmetric bodies is

oy . Y
C, =2sin* 0, + 2<§3> sin G, J ycos 0 dy (3.30)
Y i 0

i

Equation (3.30) can be written in terms of the local cross-sectional area A = ny,.

. 10 4
C, =2sin® 0, + 2<L> sin O[J cos 0 dA (3.31)
' dAJ; 0

i

The derivations of [gs. (3.30) and (3.31) are left as homework problems.

The results embodied in Eqgs. (3.29)-(3.31) were first obtained by Adolf
Busemann in 1933 (Ref. 10), with analogous approaches given in Refs. 11 and
12. For this reason, newtonian theory as modified for centrifugal force effects is
frequently catled Newtonian-Busemann theory.

Note from Egs. (3.29)-(3.31) that newtonian theory with the centrifugal
modification is not totally a “local surface inclination result.” The value of C,,
depends not only on the local inclination angle 0, but also on the shape of the
body upstream of point i through the presence of the integral terms. In some
sense, this is compatible with the true physical nature of steady supersonic and
hypersonic flows where conditions at a given point are influenced by pressure
waves from the upstream region but not from the downstream region (recall
that information cannot propagate upstream in steady supersonic flow). How-
cver, do not be misled; this aspect of Newtonian-Busemann theory has nothing
to do with the true physical picture of the propagation of information via pres-
sure waves—indeed, such propagation is not a part of the newtonian model.
Rather, the integral terms in Egs. (3.29)-(3.31) are simply expressions associated
with the mass flow through the layer immediately above point i in Fig. 3.10. This
mass flow depends on the velocity profile along n, ¥V = V(n). In the newtonian
model shown in Fig. 3.10, recall that we assumed that the flow velocity is con-
stant along a streamline inside the layer, and hence the value of V at a given n
depends on the location (hence the local value of 0) where the streamline first
enters the layer. This is how the dependence of C, on the shape of the body
upstream of point i enters the formulation.

Equations (3.29) and (3.30) take on a particularly simple form for slender
bodies where @ is small. For small 0,

sin 0, - 0;
Vi
J cosOdy—y, .
0

Also, letting ds be an incremental length along the surtace, dy = sin ¢ ds, and
hence sin 0(d0/dy); = (d0/ds);, = «;, where i; is the curvature of the surface at
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Numerical (y = 1.4) \
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—-— Modified newtonan \
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0, degrees
FIGURE 3.11

Surface pressure distributions for flow past a circular cylinder, M, = o0, y = 1.4. (From Ref. 15))

point i. Thus, Egs. (3.29) and (3.30) become (dropping the subscript)

E" = 2(0? + wy): for slender 2-D bodies (3.32a)

(3.32h)

i C, = 207 + ny: for slender bodies of revolution

For flow over a blunt body, the centrifugal correction actually makes
things worse. For example, Fig. 3.11 shows predictions for the pressure coefli-
cient over a circular cylinder based on all three types of newtonian-like flow;
newtonian. modified newtonian, and Newtonian-Busemann. These results are
compared with an exact numerical calculation carried out by Van Dyke for
M, = o (see Refl 13). Note from Fig. 3.11 that newtonian theory gives the
correct qualitative variation, but is off by a constant percentage, and that modi-
fied newtonian is quite accurate. However, the Newtonian-Busemann results are
neither qualitatively nor quantitatively correct. A similar trend occurs for slen-
der body cases as shown in Fig. 3.12. Here, the pressure distribution over a 10
percent thick biconvex airfoil is predicted by both newtonian and Newtonian-
Busemann theories, and compared with exact numerical results from the method
of characteristics. For 7 = 1.4, the Newtonian-Busemann is again worse than
straight newtonian. In Fig. 3.02, the method-ol-characteristic results are
obtained from Ref. 14, and the newtonian results from Refs. 15 and 16.
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GURE 3.12

rface pressure distribution over a 10 percent thick biconvex airfoil. Shape of the airfoil is shown in
L3 M, =y =14 (From Ref. 14)

In light of the results shown in Figs. 3.11 and 3.12, we conclude that the
atrifugal force correction to newtonian theory, although correct from the point
view of theoretical mechanics, is simply not valid for practical applications.
r this reason, the centrifugal force corrections are rarely, if ever, seen in con-
nporary applications of newtonian theory for hypersonic vehicle design.
ierefore, why have we spent an entire section of this book discussing such
rrections? Is it only an academic excrcise, at best? The answer is—not quite.
iis is the subject of the next section.

5 NEWTONIAN THEORY—
HAT IT REALLY MEANS

Secs. 3.2-3.4, the theoretical basis of newtonian theory was developed, includ-
3 the centrifugal force eflects. Given the newtonian flow model, Eq. (3.3) for a
t surface, and Eqgs. (3.29) and (3.30) for curved surfaces are precise results,
tained by the rigorous application of theoretical mechanics to the postulated
ydel. On the other hand, when we apply newtonian theory to practical hy-
rsonic flow problems in air, we have seen in Secs. 3.3 and 3.4 that the best
reement with exact results is obtained without the centifugal force correc-
ns - which at first glance appears theoretically inconsistent. Indeed, straight
wtonian theory [Eq. (33), or Lee’s modification given by Eq. (3.15)]
quently gives very acceptable results for pressure distributions over hyper-
nic bodies in air, whether or not these bodies have straight or curved surfaces.
erefore, is newtonian theory just an approximation which fortuitously gives
wsonable results for hypersonic flow? Is the frequently obtained good agree-
:nt between newtonian and exact results just a fluke? The answer is no—
wtonian theory has true physical significance if, in addition to considering the
it of M, — 0o, we also consider the limit of y — 1.0. Let us examine this in
ire detail.
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Temporarily discard any thoughts of newtonian theory, and simply recall
the exact oblique shock relation for C, as given by Eq. (2.14), repeated below
(with frec-stream conditions now denoted by a subscript oo rather than a sub-
script 1. as used in Chap. 2)

. 4 ) 1
e=: 4 <m~ fo v) (2.14)

Equation (2.15) gave the limiting value of C, as M, — oo repeated below:

4
as M '3 C,— — -sin? f§ 2.15
1 i P sin” f» ( )
Now take the additional mit of y —» 1.0. From Eq. (2.15), in both limits as
M, — o and 7 - 1.0, we have

C,—2sin? (3.33)

711

Equation (3.33) 15 a result from exact oblique shock theory; it has nothing to do
with newtonian theory (as yet). Keep in mind that f in Eq. (3.33) is the wave
angle, not the deflection angle.

Let us go further. Consider the exact oblique shock relation for p,/ps,
given by Eq. (2.3) repeated below (again with subscript oo replacing the sub-
script 1):

2 7+ DM2 sin?
br_ ,’jr)‘aﬁlsil.f_ (2.3
pe (= DMgsin® f+2
Equation (2.4) was obtained as the limit where M, — o0, namely
5 !
asM, - o P2 —>) + 2.4)
Po 71
In the additional limit as y — 1, we find:
asy—tand M | - > (3.34)

re., the density behind the shock is infinitely large. In turn, mass flow consider-
ations then dictate that the shock waove is coincident with the body surfuce. This is
further substantiated by Eq. (2.19), which is good for M, - oo and small deflec-
tion angles

A (2.19)

[N xS
Y

In the additional limit as y — 1, we have:

asy— 1 and M, — o and 0 and f§ small f=0
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i.e., the shock wave lies on the body. In light of this result. Eq. (3.33) is written

as
C,=2 sin? (3.35)

Examine Eq. (3.35). It is a result from cxact oblique shock theory, taken in the
combined limit of M , — oo and y — 1. However, it is also precisely the newtonian
result given by Eq. (3.3). Therclore, we make the following conclusion. The
closer the actual hypersonic flow problem is to the limits M — oo and  — |,
the closer it should be described physically by newtonian flow. Also in this com-
bined limit, the centrifugal correction becomes physically appropriate, and the
Newtonian-Busemann theory gives better results than straight newtonian. For
example, Fig. 3.13 illustrates the pressure coeflicient over a 10 percent thick bi-
convex airfoil at M, = o0 this is the same type of comparison made previously
i Fig. 3.12. However, Fig. 3.13 is for y = 1.05, and clearly the Newtonian-
Buscmann theory gives much closer agreement with the exact method of charac-
teristics than does the straight newtonian. This is in direct contrast with the
results for y = 1.4 shown in Fig. 3.12. Therefore, we conclude that the applica-
tion of newtonian theory to hypersonic flow has some direct theoretical sub-
stance, becoming more accurate as y — 1. Furthermore, for hypersonic flows in
air with y = 1.4, we would not expect the full newtonian theory (properly
including centrifugal eflects) to be accurate and, as we have seen in Figs. 3.11
and 3.12, it is not. On the other hand, Jor air with y = 1.4, agreement between
exact results and the straight newtonian theory (without centrifugal effects) does
indeed appear to be rather fortuitous.

We might ask the rather academic question: If in the limit of M — o
and y — 1, the shock layer thickness goes to zero, then how can there be any
centrifugal force felt over this zero thickness? The answer is, of course, that in
the saume limit the density becomes infinite, and although the shock layer ap-

0.10

Q.08

0.06

0.04

0.02

FIGURE 3.13
Same as Tig. 3.12, except with y = 105 (From Ref. 14.)
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proaches zcero thickness, the infinite density felt over this zero thickness is an
indeterminate form which yields a finite centrifugal force.

As a final note on our discussion of newtonian theory, consider Fig. 3.14.
Here, the pressure coefficients for a 15-degree half-angle wedge and a 15-degree
half-angle cone are plotted versus free-stream Mach number for y = 1.4, The
exact wedge results are obtained from oblique shock theory, and the exact cone
results arc obtained from the solution of the classical Taylor-Maccoll equation
(see, for example, Ref 4) as tabulated in Refs, 17 and 18. Both sets of results arc
compared with newtonian theory, €, = 2sin” §, shown as the dashed line in Fig.
3.14. This comparison demonstrates two general aspects of newtonian results:

1. The accuracy of newtonian results improves as M, increases. This is to
be expeeted from our previous discussion. Note from Fig. 3.14 that below
M, =5, the newtonian results are not even close, but the comparison
becomes much closer as M, increases above S.

2. Newtonian theory is usually more accurate for three-dimensional bodies (e.g.,
the cone) than for two-dimensional bodies (e.g., the wedge). This is clearly
evident in Fig. 3.14 where the newtonian result is much closer to the cone
results than to the wedge results.

0.6 —
0.5J~
0.4+
gl
YN
R
al3 03
[
o
0.2
0.t
1 1 | 1 i
0 4 8 12 16 20
M,
FIGURE 3.14

Comparison between newtonian and exact results for the pressure coefficient on a sharp wedge and
a sharp cone.
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These two trends are general conclusions that seem to apply to newtonian
results for hypersonic bodies in air. Furthermore, we are tempted to say
that newtonian results for blunt bodies should use the modified newtonian
formula [Eq. (3.15)], and that such results usually produce acceptable accuracy.
as illustrated in Figs. 3.8 and 3.11. In contrast, we suggest that newtonian results
for slender bodies should use the straight newtonian law [Eq. (3.3)], and we
observe that its accuracy may not be totally acceptable in some cases. For
cxample, for Fig. 3.14, at M_ = 20, the percentage error in using ncwtonian
results is 19 and S percent for the wedge and cone, respectively—not as accurate
as might be required for some applications. If the modified newtonian formula
[Eq. (3.15)] had been used in Fig. 3.14, the errors would be even larger, since
C,p.ie < 2. Therefore, we conclude that although newtonian theory is very uscful
due to its simplicity, in some applications its accuracy leaves something to be
desired.

As a parenthetical comment, Fig. 3.14 illustrates another trend that is
characteristic of hypersonic flow. Note that, at low M, the exact values of C,
for both the wedge and cone decrease rapidly with increasing Mach number.
However, at higher values of M ,, the pressure coefficient for each shape tends
to scek a plateau, approaching a value that becomes rather independent of M,
at high Mach number. This is an example of the Mach number independence
principle, to be discussed in Chap. 4. There we will see that a number of proper-
ties in hypersonic flow, inctuding C,, lift coeflicient, wave drag coefficient, and
moment coefficient become retatively independent of M, at high Mach number.

3.6 TANGENT-WEDGE/
TANGENT-CONE METHODS

Referring again to the roadmap given in Fig. 1.23, we reming ourselves that we
are discussing a class of hypersonic prediction methods based only on a knowl-
edge of the local surface inclination relative to the free stream. The newtoman
theory discussed in Sccs. 3.2-3.5 was one such example; the tangent-wedge/
tangent-cone methods presented in this section are two others.

Let us consider first the tangent wedge method, applicable to two-dimen-
sional hypersonic shapes. Consider the two-dimensional body shown as the
hatched area in Fig. 3.15. Assume that the nose of the body is pointed, and that
the local surface inclination angle 0 at all points along the surface is less than
the maximum deflection angle for the free stream Mach number. Consider point
i on the surface of the body; we wish to calculate the pressure at point i. The
local deflection angle at point i is ;. Imagine a line drawn tangent to the body
at point i; this line makes an angle 0; with respect to the free stream, and can be
imagined as the surface of an equivalent wedge with a half angle of 0,
as shown by the dashed line in Fig. 3.15. The tangent-wedge approximation
assumes that the pressurc at point i is the same as the surface pressure on the
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Equivalent semiwedge
for point i, with

Local deflection deflection angle 0,

angle of surface

Actual body

FIGURE 3.15

Hlustration of the tangent-wedge method.

equivalent wedge at the free stream Mach number, M, that is, p, is obtained
directly from the exact oblique shock relations for a deflection angle of 4, and a
Mach number of M .

The tangent-cone method for application to axisymmetric bodies 1s analo-
gous to the tangent-wedge method, and is illustrated in Fig. 3.16. Consider point
i on the body; a line drawn tangent to this point makes the angle ¢; with respect

p; = pressure on the surface of a
cone with a semiangle 0,
in a {ree stream at M |

\
M } i
o | Equivalent
P | cone for
// Local deflection | pointi, with
//} angle of surface cone semi-
- / \angle 0;
/A
[l
- { ]
T~
\\x/
FIGURE 3.16

Tustration of the tangent-conc method.
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> the free stream. Shown as the dashed line in Fig. 3.16, this tangent line can be
nagined as the surface of an equivalent cone, with a semiangle of 0,. The tan-
ent-cone approximation assumes that the pressure at point / is the same as the
urface pressure on the equivalent cone at a Mach number of M, that is, p; is
btained directly from the cone tables such as Refs. 17 and 18.

Both the tangent-wedge and tangent-cone methods are very straightfor-
ard. However, they are approximate methods, not based on any theoretical
rounds. We cannot “derive” these methods from a model of the flow to which
asic mechnical principles are applied, in contrast to the theoretical basis for
cwtonian flow. Nevertheless, the tangent-wedge and tangent-cone methods fre-
uently yield reasonable results at hypersonic speeds. Why? We can give an
pproximate, “hand-waving” explanation, as follows. First, consider a line
rawn perpendicular to the body surface at point 7, across the shock layer as
cetched in Fig. 3.15. Note that the imaginary shock wave from the imaginary
juivalent wedge crosses this line below the point where the actual shock wave
om the body crosses the line. The region around this line is isolated and mag-
ified in Fig. 3.17. Now consider the following fact.

Fact: In the hypersonic flow across an oblique shock
wave on a slender body, the y component of the flow
velocity v is changed much more strongly than the x com-
ponent, u.

his fact, which we will revisit several times in the following chapters is proved
y a combination of Eqs. (2.7), (2.10), and (2.19), which yields in the limit of

1, — oo (referring to the shock geometry shown in Fig. 2.2)

AtV —uy oy 41

- e 3.36
V.o v, 2 36)
Av D, o

v - v Ny (3.37)

1 Eq. (3.36), Au is the change in the x-component of velocity across the oblique
wck, and in Eq. (3.37), Ar is the change in the y component of velocity.
Tearly. the change of the u velocity is considerably smaller (order of (1) than
e change of the v veloceity (order of #). (Keep in mind that 0 is a small angle in
wdians.) In turn, recalling Euler’s equation dp = —pV dV, this implies that the
iajor pressure gradients are normal 1o the flow. Referring to Fig. 3.17, the prin-
pal change in pressure is therefore along the normal line iab; by comparison,
wnges in the flow direction are second order. Hence examining Fig. 3.17, the
irface pressure on the body at point i is dominated by the pressure behind the
ek at point a. Due to the centrifugal force effects, the pressure at point I, p;,
ill be less than p,. Now, in the tangent-wedge method, p; = p,, where p, is the



LOCAL SURFACE INCLINATION METHODS 69

FIGURE 3.17
Segment of a hypersonic shock layer; for use in partial justification of the tangent-wedge method.

pressure behind the imaginary wedge shock (at point & in Fig. 3.17). The pres-
sure p, is already fess than p, because the imaginary wedge shock angle at point
b is less than the actual body-shock angle at point @ (Byeay > Bueage) Thus we
see that the wedge pressure p, is a reasonable approximation for the surface
pressure p., becausc in the real flow picture the higher pressure p, behind the
body shock is mitigated by centrifugal effects as the pressure is impressed {rom
the shock to the body at point i. The same reasoning holds for the tangent-cone
method.

Results obtained with the tangent-cone method as applied to a pointed
ogive arc shown in Fig. 3.18, taken from Ref. 19. Here, the surface pressure
distribution is plotted versus distance along the ogive. Four sets of results are
presented, cach for a different value of K = M, (d/l), where d/I is the slender-
ness ratio of the ogive. The solid line is an exact result obtained from the rota-
tional method of characteristics, and the dashed line is the tangent-cone result.
Very reasonable agreement is obtained, thus illustrating the usefulness of the
tangent-cone method, albeit its rather tenuous foundations. The same type of
agreement is typical of the tangent-wedge method. In Fig. 3.18, the parameter
K = M, (dfl) is called the hypersonic similarity parameter. Its appearance in
Fig. 3.18 is simply a precursor to our discussion of hypersonic similarity in
Chap. 4.
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{GURE 3.18
irface pressure distributions for ogives of different slenderness ratio dfl. (From Ref. 19.)

.7 SHOCK-EXPANSION METHOD

) the local surface inclination methods discussed so far, the newtonian method
an be applied to a body surfuce of any inclination angle, whereas the tangent-
redge/tangent-cone methods require a local surface angle less than the shock
ctachment angle for the given frec-stream Mach number. This is why newto-
1an theory can be applied to blunt-nosed bodies, but the tangent-wedge/tan-
ent-cone methods are limited to sharp-nosed bodies with attached shock waves.
“he method discussed in the present section—the shock-expansion method—is
n the latter category. 1t assumes a sharp-nosed body with an attached shock
vave. However, it has more theoretical justification than the tangent-wedge/tan-
ent-cone methods, as described below.

Consider the hypersonic flow over a sharp-nosed two-dimensional body
vith an attached shock wave at the nose, as sketched in Fig. 3.19. The deflection
ingle at the nose is 0,. The essence of the shock-expansion theory is as follows:

. Assume the nose 1s a wedge with semiangle 0,. Caleulate M, and p, behind
the oblique shock at the nose by means of exact oblique-shock theory.

Y. Assume a local Prandtl-Meyer expansion along the surface downstream of
the nose. We wish to calculate the pressure at point i, p;. To do this, we must



LOCAL SURFACE INCLINATION METHODS 71

Surface pressure from a
Prandil-Meyer
expansion where, al a
local point i, the
expansion angle is
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FIGURE 3.19

Tustration of the shock-expansion method.

first obtain the local Mach number at point i, M,. This is obtained from the
Prandtl-Meyer function, assuming an expansion through the deflection angle
Al =10,— 0,..

AD = L ———t‘m J” —l)—tdn J~u( -1
\A
[an /M2 =1 —tan~ H/M,?Tl] (3.38)

In Eq. (3.38), M, is the only unknown; M, is known from step [ above, and
Al =0, — 0,15 a known geometric quantity. Of course, for air with v = 1.4,
tables for the Prandtl-Meyer function abound (sce for example, Ref. 4), and in
such a case the tables would be used to calculate M, rather than attempting
to solve Eq. (3.38) implicitly for M.
3. Caleulate p; from the isentropic flow relation:
P [1 oy — !)/ZMZ]V/("’”
Pn

1+ (y — 1)2M?
(again. for air with y = 1.4, the isentropic flow tables, such as found in Ref. 4,
can be used to obtain p; in a more convenient manner.)

(3.39)

Results from the shock-expansion method, obtained from Ref. 20, for flow over
a 10 percent thick biconvex airfoil are shown in Fig. 3.20, as compared with the
exact method of characteristics. Excellent agreement is obtained. This is to be
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FIGURE 3.20
surface pressure distribution over the same 10 percent thick airfoil as shown in Fig. 3.13; compar-
son of the shock expansion method with exact results from the method of characteristics. M, = o0.
From Ref. 20)

somewhat expected. After passing through the attached shock wave at the nose.
the actual flow does indeed expand around the body, and this expansion process
is approximated by the assumption of a local Prandtl-Meyer expansion. Why
this is not a precisely exact calculation is discussed two paragraphs below.

The shock-expansion method can also be applied to bodies of revolution.
The method is essentially the same as shown in Fig. 3.19, except now 0, 1s
assumed to be the semiangle of a cone, and M, and p, at the nose are obtained
from the exact Taylor-Maccoll cone results. Then the Prandtl-Meyer expansion
retations are applied locally downstream of the nose. This implies that the flow
downstream of the nose is locally two-dimensional, which assumes that the
divergence of streamlines in planes tangential to the surface is much smaller
than the divergence of streamlines in planes normal to the surface. For bodies of
revolution at zero degrees angle of attack, this condition is usually met. Results
for the shock-expansion method applied to ogives at zero angle of attack are
shown in Fig. 3.21, obtained from Ref. 21. The ogive has a slenderness ratio,
d/1=1/3. In Fig. 321a, the results are for a supersonic Mach number,
M, = 273, whereas in Fig. 3.21h, the rcsults are for a slightly hypersonic case,
M, = 5.05. The circles are experimental data, the solid line represents an exact
result from the method of characteristics, and the dashed line is from the shock-
expansion mcthod. Note that, for the supersonic case, the shock-cxpansion
method yields poor agreement; however, for the hypersonic case, the shock-
expansion method is much closer to the hypersonic case, the shock-expansion
method 1s much closer to the exact result. There is a reason for this, as
explained below. -

Consider Fig. 3.22, which contains schematics of supersonic and hyper-
sonic flows over a pointed body with an attached shock wave. Downstream of
the shock wave, cxpansion waves are generated at the surface of the body and
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FIGURE 3.21

Pressure distribution over an ogive with 4/l = 1/3 at zero angle of attack. y = 1.4. (From Ref. 21)
(a) Supersonic case; (h) hypersonic case.

propagate outward. eventually intersecting the bow shock wave. These expan-
sion waves reflect from the shock wave; the reflected waves propagate back to
the body surface, as shown by the dashed lines in Fig. 3.22. Shock-expansion
theory ignores the effect of these reflected waves on the body-surface pressure.
Now consider just the supersonic case sketched in Fig. 3.22a. At supersonic
Mach numbers. the shock angles and the incident and reflected wave angles are
large. {The incident and reflected waves are essentially Mach waves with the
Mach angle i = arcsin (1/M) where M is the local Mach number; at low Mach
number, pt is large.] As a result, as seen in Fig. 3.22a, the reflected waves
influence a considerable portion of the body surface, and this influence is not

Supersonic Hypersonic
(a} h

FIGURE 3.22
Schematic of shock wave and Mach wave patterns. (¢} Supersonic; (b) hypersonic.
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iken into account by the shock-expansion method. In contrast, for the hyper-
onic case shown in Pig. 3.22h, the shock and Mach angles are much smaller,
nd the reflected waves propagate much further downstream before they hit the
ody surface. As a result, the reflected waves do not greatly influence the surface
ressure, especially on the forward portion of the body. Therefore, the real
iypersonic picture satisfies the assumption of shock-expansion thcory more
losely than the supersonic picture, and it is no surprise that shock-expansion
heory viclds better agreement at higher Mach numbers.

1.8 SUMMARY AND COMMENT

Fhis chapter has dealt with hypersonic local surface inclination methods—such
ucthods predict the local surface pressure as a function of the local surface
nclination angle relative to the free-stream direction, 0. The methods discussed
yere:

. The straight newtonian mcthod, which yields

C,=2sin*0 (3.3)
2. The modified newtonian method, which states
C,=C,.. sin*0 (3.15)

3. The Newton-Busemann method, which takes into account the centrifugal
force correction. For a two-dimensional body, this result is

Yi
¢, =2sin?0; + 2?” sin ()[J cos 0 dy (3.29)
f])’_ i 0

4. The tangent-wedge method, where the pressure at point i on a two-dimen-
stonal body is assumed to be the same as a wedge with deflection angle 0,.

5. The tangent-cone method, where the pressure at point i on an axisymmetric
body is assumed to be the same as a cone with the semicone angle of ..

6. The shock-cxpansion method, where the pressure distribution downstream of
the attached shock wave on a two- or three-dimensional body is assumed to
be given by a local Prandtl-Meyer cxpansion.

It is not possible to state with any certainty which of the above methods is the
best for a given application. All of these methods have their strengths and weak-
nesscs, and some intuitive logic is required to choose one over the others for a
given problem. For example, in the prediction of the pressure distribution over a
hypersonic airplane, any distinguishable portions of the fuselage might be
treated with the tangent-cone method, whereas the wings might be better treated
with the tangent-wedge method. Of course, for surfaces with large inclination
angles (greater than the maximum deflection angle for an oblique shock wave at
the given M) the newtonian method is appropriate. Within the confines of the
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newtonian method itsell, for blunt surfaces, where 0 1s very large. modified new-
tonian is best, whereas straight newtonian usually yields better results for slen-
der bodics. In both cascs, for 7 = 1.4, the centrifugal force correction feads to
poor results, and should not be used. (Keep in mind that although the centrifu-
gal force correction is theoretically consistent with mechanical principles. it is
quantitatively correct only in the combined limit of M, - o and 7 - 1)

In regard to all of the local surface inclination methods discussed here,
none of the above judgments on accuracy and applicability are totally definitive,
and they all must be taken in the spirit of suggestions only. However, onc defini-
tive statement can be muade about all of these methods, namely, that they are
straightforward and casy to apply. For this reason, they are popular design tools
for the investigation of large numbers of different hypersonic bodies. Indeed, all
of the tocal surface inclination methods discussed in this chapter arc embodied
in an industry-standard computer program called the “Hypersonic Arbitrary
Body Program™ originally prepared by Gentry (Ref. 22), and for this reason
frequently referred to as the “Gentry program.” This program has been in wide
use throughout industry and government since the early 1970s. All of thesc
methods discussed in this chapter are options within the Gentry program which
can be called at will for application to different portions of a hypersonic body.
This program, and modified versions of it, 1s at present the most widely used
tool in the preliminary design and analysis of hypersonic vehicles. It is men-
tioned here ouly to reinforce the engineering practicality of the methods dis-
cussed in this chapter.

PROBLEMS

3.1. Consider the variation of 1ift with angle of attack for an infinitely thin flat plate.
Using newtonian theory, prove that maximum hift occurs at o = 54.7°.

3.2. From ncwtonian theory, prove that the drag coeflicient for a circular cylinder of
infinite span is 4/3.

3.3. From newtonian theory, prove that the drag coeflicient for a sphere is 1.

3.4. In Probs. 3.1-3.3, are the results changed by using modified newtonian theory? Ex-
phin.

3.5. Derive Egs. (3.29) and (3.30) for the newtonian pressure coeflicient on an axisym-
metric body including centrifugal effects.

3.6. The curves shown in Fig. 3.6 are changed when skin friction on the flat plate is
included. In particular, the variation of L/D with o will peak at a low angle of attack,
and go to zero at x =0. (Why?) Let the drag cocflicient due 10 skin friction be
assumed constant, and denoted by Cp, . Assuming a newtonian pressure distribution,
show that the maximum value of L/D is 0.667/C}?>, and occurs at an angle of attack
(in radians) of = = CJ*. Furthermore, at (L/D),,, show that C,, = {C,, where C,, is
the total drag coefficient. (In other words, we can state that, at (L/D) wave drag
is twice the friction drag.)

(SN

3.7. Using newtonian theory, show that, at hypersonic spceds, slagnation pressure is
about twice the dynamic pressure g, where, by definition, g, = p. V3.
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41 INTRODUCTION

Examining the roadmap in Fig. 1.23, we note that our discussion of inviscid
hypersonic acrodynamics started with the basic hypersonic shock and expansion
relations (Chap. 2). and then carried on with local surface inclination mcthods
for predicting pressure distributions on hypersonic bodics (Chap. 3). These dis-
cussions. which constitute the extreme left-hand branch in Fig. 1.23, have in
common the need for only elementary mathematics: for the most part, the deri-
vations and results involved only simple algebra. The reason for this is that
stratght obligue shock waves, expansion waves. and local surface inclination
methods involve only localized phenomena-—they do not require an integrated
knowledge of whole regions of a flow field. The material in Chaps. 2 and 3 are
about as far as we can proceed in this direction. For virtually all other consider-
ations in hypersonic flow, we must examine the details of the complete flowfield.
Therefore. we must now move to the second branch of our roadmap in Fig
1.23, labeled “flowficld considerations.” Tn so doing, our mathematical require-
ments increase, because the details of any flowfield are governed by a system of
conservation cquations which can be expressed in either integral or partial dif-
ferential cquation form. Approximate solutions of these equations for various
hypersonic applications is the subject of the present chapter. “Exact”™ (numeri-
cal) solutions will be discussed in Chap. 5.

Another way to scope the material in this chapter is to establish the fol-
lowing philosophy. Up to as late as 1960, the history of the development of fluid
mechanics had involved two dimensions: pure experiment and pure theory. With
the advent of computational fluid dynamics after 1960, a new third dimension,
namely, numerical computations, has been added which complements the previ-
ous two. The science of fluid dynamics is now extended and applied by using all
three dimensions in concert. The material in the present chapter is in the dimen-
sion of purc theory. The contributions of the other dimensions will be discussed
in subsequent chapters. By its very nature, any hypersonic flowfield analysis
before the advent of high-speed digital computers had to be in the dimension of
pure theory. This was the only option for the analysis of hypersonic flows dur-
ing the early development of the discipline. Many of these older analyses. all of
which involved some approximations to allow the solution of the governing
equations, arc just as relevant to the modern hypersonics of today as they were
in the 1950s. Moreover, they frequently have the advantage of illustrating more
clearly than numerical solutions the effect of various parameters on the physical
results. For these reasons. the present chapter is devoted to the discussion of
approximate analyses of inviscid hypersonic flowfields. In so doing, we will
begin to watk our way down the second branch of the roadmap in Fig. 1.23.

42 THE GOVERNING EQUATIONS

Consider an inviscid, adiabatic (hence isentropic) flowficld. The derivation of the
governing conservition equations can be found in Refs. 4 and 5; the results,
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/ritten in cartesian coordinates, are:
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In the above, p is density, u, v, and w are the x, y, and z components of velocity,
respectively, p is pressure, and s is entropy. Equations (4.1)-(4.5) are the well-
known FEuler equations, which govern inviscid flows. In reality, the above equa-
tions arc a somewhat special form of the Euler equations, wherein body forces
are neglected in Eqs. (4.2)-(4.4), and Eq. (4.5) is a specialized energy equation
for an adiabaltic, mviscid flow. In words, Eq. (4.1) is a statement that mass is
conserved; Egs. (4.2)-(4.4) are statements of Newton’s second law, F = ma, in
the x, y, and z directions, respectively, and Eq. (4.5) is a statement that the
entropy is constant along a streamline for an inviscid, adiabatic flow. In sgme
respects, Eq. (4.5) can be called the “entropy equation™, although it is funda-
mentally an cnergy equation. For an isentropic process in a calorically perfect
gas (a perfect gas with constant specific heats), p/p’ = constant. Hence, if the
entropy is constant along a streamline as stated by Eq. (4.5), then the quantity
p/p? is also constant along a streamline, and for a calorically perfect gas Eq.
(4.5) can be replaced by

O (p Jd(p Jd(p o (p
- - — —~-1=0 4.6
ot (/ﬂ') o Ox (/)V o dy\p? o Jz\ g’ (4.0)

The solution of the above equations for a given problem depends on the
boundary and initial conditions for that problem. Discussions of the appropriate
boundary and initial conditions will be made as appropriate in subsequent
sections.

43 MACH NUMBER INDEPENDENCE

Return again to Fig. 3.14, where values of C, for both a 15-degree half-angle
wedge and cone are plotted versus Mach number.-As noted at the end of Sec.
3.5, at low supersonic Mach numbers, C, decreases rapidly as M, is increased.
However, at hypersonic speeds, the rate of decrcase diminishes considerably, and
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C, appears to reach a platcau as M, becomes large, that is C, becomes relative-
Iy independent of M, at high Mach numbers. This is the essence of the Mach
number independence principle; at high Mach numbers, certain aerodynamic
quantitics such as pressure coeflicient, hift and wave-drag coeflicients, and flow-
field structure (such as shock wave shapes and Mach wave patterns) become
essentially independent of Mach number. Indeed, straight newtoman theory (dis-
cussed in Chap. 3) gives results that are rotally independent of Mach number, as
clearly demonstrated by Eq. (3.3). Modified ncwtonian theory exhibits some
Mach number variation via €, in Eq. (3.15); however, the variation of C,_
with M, in Fig. 3.7 exhibits a Mach number independence at high M, . The
hypersonic Mach number independence principle is more than just an observed
phenomena; it has a mathematical foundation, which is the subject of this
section. We will examine the roots of this Mach number independence more
closely.

Let us nondimensionalize Egs. (4.1)~(4.4) and (4.6) as follows. Define the
nondimensional variables (the barred quantities) as

X ; z
=7 ey

1 B v - w
i = r= - W=

VJO Voo Voo
p=-Ty =t

/)fl V:’;‘ /)CO

where [ denotes a characteristic length of the flow, and p,, and V,, are the free-
stream density and velocity respectively. Assuming steady flow (9/0t = 0), we
obtain from Eqs. (4.1)-(4.4) and (4.6)

SO0 00 W)
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ox ey Z 0 *7)
ap
- 48
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N
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Any particular solution of these equations is governed by the boundary condi-
tions, which are discussed below.



“ INVISCID HY P RSONIC FOW

The boundary condition for steady inviscid flow at a surface is simply the
atement that the flow must be tangent to the surface. Let n be a unit normal
sctor at some point on the surface, and let V be the velocity vector at the same
oint. Then, for the flow to be tangent to the body,

V-on=0 (4.12)

If there 1s any mass transfer through the surface, then V-n = v, where vy is the
ormal velocity of the fluid being transferred into or out of the surface. How-
ver, most inviscid flow problems do not involve mass transfer across the sur-
ice, and Eq. (4.12) is the pertinent boundary condition.) Let n,, n,, and n, be
he components of n in the x, y, and z directions respectively. Then, Eq. (4.12)
an be written as

un, + on, + wn, =0 (4.13)

Recalling the definition of direction cosines from analytic geometry, note, in Eq.
4.13) that ny, ny, and n, arc also the direction cosines of n with respect to the x,
, and z axes respectively, With this interpretation, n,, n,, and n, may be con-
Jidered dimensionless quantities, and the nondimensional boundary condition
it the surface is readily obtained from Eq. (4.13) as

an, + on, + wn, =0 (4.14)

Assunic that we are considering the external flow over a hypersonic body,
where the flowfield of interest is bounded on one side by the body surface, and
on the other side by the bow shock wave. Equation (4.14) gives the boundary
condition on the body surface. The boundary conditions right behind the shock
wave are given by the oblique shock properties expressed by Egs. (2.1), (2.3),
(2.6), and (2.8), repcated below for convenience (replacing the subseript 1 with
sub infinity for free-stream propertices).

D2 2y 2 a2
=1+ - (Misin®ff—1 2.1

o, . ( s1 ) 2.n
. 2 ein2

Pr ,,(,/,f,})‘y:"_,i? f (2.3)

P (7= DMZLsin?ff+2

2 - %(,Mjﬂf'iz,ﬁ%g (2.6)

Vo (y + DM5,

vy _ 2(M3°,S?n,ﬁ, - 1’) Cot"ﬁ 2.8)

Vo v+ DM

In terms of the nondimensional variables, and noting that for a catorically per-
fect gas pa/p, = palp, Vi)/p., = P2 VEL/RT, = pyyVijal = pyyML, Eqgs. (2.1),
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(2.3), (2.6), and (2.8) become

1 2 1
py= =~ 5+ ——|sin?f — 4.15
P> M2 + S (sm Mi) (4.15)

_ (v + M2 sin? g

,= A M s 4.16
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g, = AMesin® f— 1cot f @.18)
N v+ DML,

In the limit of high M, as M — o, Egs. (4.15)-(4.18) go to [refer to Egs.
(2.2, (2.4), 2.7), and (2.10)]

P (4.19)
oy 41!
fro (4.20)
Y —
2 sin?
i1 — 321—/3 @21
¥
2p
F, - S‘“+ { (4.22)

Now consider a hypersonic flow over a given body. This flow is governed
by Egs. (4.7) (4.11), with boundary conditions given by Egs. (4.14)-(4.18).

Question:  Where does M, cxplicitly appear in these
cquations?
Answer: Only in the shock boundary conditions, Egs.

(4.15)-(4.18).

Now consider the hypersonic flow over a given body in the limit of large M.
The flow is again governed by Eqs. (4.7)-(4.11), but with boundary conditions
given by Eqgs. (4.14) and (4.19)-(4.22).

Question:  Where does M, cxplicitly appear in these
equations?
Anvwer:  No place!

Conclusion: At high M, the solution is independent of
Mach number.
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Clearly, from this last consideration, we can see that the Mach number indepen-
dence principle follows directly from the governing equations of motion with the
appropriate boundary conditions written in the limit of high Mach number.
Therefore, when the frec-stream Mach number i1s sufficiently high, the non-
dimensional dependent variables in Egs. (4.7)-(4.11) become essentially indepen-
dent of Mach number; this trend applies also to any quantities derived from
these nondimensional variables. For example, C, can be easily obtained as a
function of p only; in turn, the lift and wave-drag coefficients for the body, C,
and Cp,, respectively, can be expressed in terms of C, integrated over the body
surface (sce, for example, Ref. 5). Therefore, C,, C,, and C), also become inde-
pendent of Mach number at high M . This is demonstrated by the data shown
in Fig. 4.1, obtained from Refs. 23-25, as gathered in Ref. 15. In Fig. 4.1, the
mcasured drag coefficients for spheres and for a large-angle cone-cylinder are
plotted versus Mach number, cutting across the subsonic, supersonic, and hyper-
sonic regimes. Note the large drag risc in the subsonic regime assoctated with
the drag-divergence phenomena near Mach 1, and the decrease in Cp in the
supersonic regime beyond Mach [ Both of these variations arc expected and
well understood. (See, for example, Rels. 1 and 5.) For our purposes in the
“present scction, note in particular the variation of Cjpy in the hypersonic regime;
for both the sphere and cone-cylinder, C;, approaches a plateau, and becomes
relatively independent of Mach number as M becomes large. Note also that
the sphere data appears to achieve “Mach number independence” at lower

;x-x-xx_x—x_x_x_x__x__x x=

0.8
¥
4f++
\+++ X
Cp 0.6 T e e —
041
0.2
Cone-cylinder Sphere
+ (Ref. 25) x {Ref. 24)
0 L I ! | | 1 (R?f' ) L ]
0 2 4 6 8 10
M,

FIGURE 4.1
Drag coeflicient for a sphere and a cone-cylinder from ballistic range measurements; an illustration
of Mach number independence. (From Ref. 15.)
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Mach numbers than the conc-cylinder. This is to be expected, as follows. In Eqs.
(4.15) (4.18). the Mach number frequently appears in the combined form
M2 sin? ff: for anv given Mach number, this quantity is larger for blunt bodies
(f large) than for slender bodies (f small). Hence blunt-body flows will tend to
approach Mach number independence at lower M, than will slender bodies.
Finally, keep in mind from the above analysis that it is the nondimensional
variables that become Mach number independent. Some of the dimensional vari-
ables, such as p. are not Mach number independent; indeed, p — 00 as M, — o0,

44 THE HYPERSONIC
SMALL-DISTURBANCE EQUATIONS

The governing Euler equations discussed in Sec. 4.2 apply to the inviscid flow
over a body of arbitrary shape—large or small, thick or thin, blunt or sharp. In
applications involving low drag and/or high L/D hypersonic configurations, we
are generally dealing with slender body shapes; some examples arc shown in
Figs. 1.8 to 1.11. Therefore. a special, approximate form of the Euler equations,
applicable to hypersonic slender bodics, is useful in studying the acrodynamic
propertics of such bodies. The purpose of this scction is to obtain these equa-
tions, called the hypersonic small-disturbance equations.

We will follow an approach f{requently employed in aerodynamic theory;
instead of using the flow velocity itself as a dependent variable, we will deal with
the change in velocity relative to the free-strcam, namely the perturbation veloci-
ty. For cxample, consider the two-dimensional flow over the slender body shown
in Fig. 42, At any given point in the flowfield, the vector velocity is V. This is
resolved mto x and y components, v and v respectively. In turn, u and v can be
expressed in terms of changes in velocity relative to the x and y components of

d

FIGURE 4.2
Iustration of perturbation veloesties.
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the free-stream velocity; these changes arc denoted by ' and v’ respectively, and
wre defined by

_ /
u=V,+u
0=y

The above relations are written for the case where V, is aligned with the x axis,
hence the y component of V,, is simply zero. The changes in velocity, v and v/,
arc called perturbation velocities; in general, they do not have to be small.

In this section, we are considering the hypersonic flow over a slender body.
In such a case, ' and v’ are assumed to be small relative to V,, but not neces-
sarily small relative to the free-strcam speed of sound. Hence, we will assume
that we are dealing with small perturbations, v’ < V, and v" < V. To study the
naturc of these perturbations further, consider the velocity at a point on the
surface of the body, as shown in Fig. 4.2. The body surface is given by y = f(x),
hence the flow tangency condition dictates that

’

v dy

= he b 23
Vb dy (on the body) (4.23)

However, examining Fig. 4.2 we see that

dy _ o<d> (4.24)
dx [

where the symbol O means “order of.” Let us define

d .
| = 7 = slenderness ratio

Then from Egs. (4.23) and (4.24)

’
»

dy
V:,,y J{':L", = dx = O(T) (425)

Since ' <€ V,,, then Eq. (4.25) is approximated by

’

= 06) (4.26)

[=5]

Let a, = free-stream speed of sound. From Eq. (4.26):

' |4
=2 0@
oL aoo
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-(—1" oM, (4.27)
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Clearly. from Eq. (4.27). the strength of the disturbance in the flow (relative to
a,) is of the order of the parameter M t. This parameter will be identificd as
the hypersonic similarity paramcter in the next section. However, for the time
being, simply keep in mind the definition of the slenderness ratio, t = d/l, and
the fact that the product M, 7 is an indication of the strength of the disturbance
created by the body in the flow, as expressed by v'/a,, .

Let us now express the steady Euler cquations in terms of the perturbation
velocities, 1 and 17, that is, in Eqs. (4.1)-(4.4) and (4.6), with zero time deriva-
tives for steady flow, replace u with V_ + u’, v with v/, and w with w’, obtaining

LoV + 1000 o) | Apw) _

. 5 L, =0 (4.28)

oV, + 11 "ﬁ.ﬁ‘%’jﬁ + o0 & Vwa;“ D4 pw “Vwaj M) g’\i (4.29)
p(V,, +u) gix + pv 0;_1; + pw’ %% = — gi 4.30)

oV, +u") ;’% + pv’ (;M; + pw %; = — gz 4.3

¢ 0 ¢
Vorwy (P Ve (P ew S P =0 (4.32)
ox \ p? ay \p? 0z \ p?

Note in Eqgs. (4.28)-(4.32) that only the velocities arc expressed in terms of per-
turbations relative to the frec-stream values; the remaining flow quantities, p
and p, are still carried as their whole values. (Sometimes, a perturbation analysis
will also deal with changes in all the dependent variables relative to the frce
stream, 1.e. a perturbation pressure p’ and perturbation density p’ would be
defined as p=p, + p’ and p = p + p’ respectively. This is not necessary in our
present analysis; in [gs. (4.28)-(4.32), p and p are the usual “whole” values of
pressurc and density.)

We wish to nondimensionalize Eqs. (4.28)-(4.32). Moreover, we wish to
have nondimensional variables with an order of magnitude of unity, for reasons
to be made clcar later. To obtain a hint about rcasonable nondimensionalizing
quantities. consider the oblique shock relations in the limit as M, — o0, ob-
tained in Chap. 2. Also note that for a slender body at hypersonic speeds, both
the shock wave angle ff and the deflection angle 0 are small, hence

. dy
sinffxsnl~0~-"~x~1
B ! dx

Thus, from Eq. (2.2), repeated below for convenience

2 2y
—=
P v t+1

M2 sin? (2.2)
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¢ have the order-of-magnitude relationship

P2

2 5 O[ME ] (4.33)
)

x

‘his in turn implies that the pressure throughout the shock layer over the body
ill be on the order of M2 12p_, and hence a reasonable definition for a non-
imensional pressure which would be on the order of magnitude of unity is
= p/yMZ% t?p,.. (The rcason for the y will become clear later.) In regard to
ensity, consider Eq. (2.4), repeated below

Py 7+ 1
o 77

R (2.4)

‘or y = 1.4, py/p, =6, which for our purposcs is on the order of magnitude

car unity. Hence, a rcasonable nondimensional density is simply p = p/p,,. In

cgard to velocities, first consider Eq. (2.7), repeated below
i, 2sin?

5 Q2.7
v, 7+ 1

Yefine the change in the x-component of velocity across the oblique shock as

wi =V, — 1, From Eq. (2.7), we have

2

Av  V, —u, 2sin®f
- N g

O(«? 4.34
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Chis implies that the nondimensional perturbation velocity @ (which is also a
‘hange in velocity in the x-direction) should be defined as @ = u//V, 17 in order
o be of an order-of-magnitude of unity. Finally, consider Eq. (2.10) repcated
wlow

_, sin2f (2.10

“rom [q. (2.10), we have

Av v, sin2f
T2 2 Lo 4.35
el b (1) (4.35)

This implies that the nondimensional perturbation velocity ¢ ought to be & =
’/V., 1, which is on the order of magnitude of onc.

[We pause to observe an interesting physical fact evidenced by Egs. (4.34)
ind (4.35). Since we are dealing with slender bodics, 7 1s a small number, much
less than unity. Hence, by comparing Egs. (4.34) and (4.35), we see that Au,
which varies as t? is much smaller than Ar, which varies as 1. Therefore, we
conclude in the case of hypersonic flow over a slender body that the change in v
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dominates the flow, i.c., the changes in « and v are both small compared to V,,
but that the change in v is large compared to the change in u. This fact was
observed carlier. in Sec. 3.6, in conjunction with an argument that the major
changes in properties in a hypersonic shock layer over slender bodies takes
place across the flow rather than along the flow.]

Bascd on the above arguments, we define the following nondimensional
quantities, all of which are on the order of magnitude of unity. Note that we add
a third dimension in the z-direction, and that y and z in the thin shock layer are
much smaller than x.

. X oy _ oz
X = — - Z=—
I YTk Iz
- u v LW
u = v = e
| T Vet
o P 5o P
STVERTIN P

(Note: The barred quantities here are different than the barred quantities used
in Sec. 4.3, but since the present section 1s self-contained, there should be no con-
fusion.) In terms of the nondimensional quantities defined above, Egs.
(4.28)-(4.32) can be written as follows. From Eq. (4.28),

¢ | '3 o’ oW
= [/7< »+1?’>][/>@Vwr2] L(q;)[”i‘#f“—r} @ W)[ } 0 (436)
(25N " y T (72 T
From Eq. (4.29),
(1 Ne (! . -
P+ 5+ lp Vi)
T CXA\T
__, /1 A N[p, Vi
i R e

op
=-= [yMZ12p,]

/l

or, noting that

2 P Ve
pmy;‘;%pwyzx 7pa)a7=’yprgo

we have

o' + 5 o’ op
—_— W —— T =
a5 P aET Tax

.
AL+ ) S+ i S 4.37)
0x
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‘rom Eq. (4.30)

bl
05’ o ol
Al +ur) +,;5/,”,+!;;« v (4.38)
0z ay
From Eq. (4.31), similarly we have
')\I’ ow' ow' op
ot + 0 rz) + pu’ bE + oW gz_ = — %g (4.3
From [iq. (4.32)
| 3 V., M2 p
(i) 2t D[V
T° 0% ¢ 0z 7 T
? V, M2
+W7_{{[ T Mo Pl } 0
0z p? T

or

N _

(0 + 227 ”<p>+ﬁ' 0< >+rv'fi;<p—>~0 (4.40)
OX \ p? ay\ p’ 0z \p’

tixamine Egs. (4.36) (4.40) closely. Because of our choice of nondimensionalized

variables, each term in these equations is of order of magnitude unity except for

those multiplied by 12, which is very small. Therefore, the terms involving 12 can

be ignored in comparison to the remaining terms, and Eqgs. (4.36)-(4.40) can be

written as

op Aoy A(pW)
LA L7 =0 4.41
x0T (“44h
_ow aon’ o’ 0[3
OF —— + W I = — 4.42
0 i + pU FE + pw e P ( )
_ov __ on v’ ap
— Do b W = — = 443
p 7% + pv 05) + pw 55 25 ( )
_ow e oW __ oW ap 4.44
e Ve = — .
Pax PP P T T oz (4.44)
o/p L d(p 3 /p
= e ' =1=0 445
% (/_}7> + 7 5 <ﬁy W > (4.45)
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Equations (4.41)-(4.45) are the hypersonic small disturbance equations. They
closely approximate the hypersonic flow over slender bodies. They are limited to
flow over slender bodies because we have neglected terms of order t2. They are
also limited to hypersonic flow because some of the nondimensionalized terms
are of order of magnitude unity only for high Mach numbers; we made certain
of this in the argument that preceded the definition of the nondimensional quan-
tities. Hence. the fact that cach term in Eqs. (4.41)-(4.45) is of the order of
magnitude unity [which is essential for dropping the 1 terms in Egs.
(4.36-4.40)] holds only for hypersonic flow.

Equations (4.41)-(4.45) exhibit an interesting property. Look for 7’ in these
equations; you can find it only in Eq. (4.42). Therefore, in the hypersonic ymall
disturbance equations, @i’ 1s decoupled from the system. In principle, Eqs. (4.41)
and (4.43)-(4.45) constitute four equations for the four unknowns, p, p, i’ and
w'. After this system is solved, then @ follows directly from Eq. (4.42). This
decoupling of &' from the rest of the system is another ramification of the fact
already mentioned several times, namely that the change in velocity in the flow
direction over a hypersonic slender body is much smaller than the change in
velocity perpendicular to the flow direction.

The hypersonic small-disturbance equations are used to obtain some prac-
tical information about hypersonic flows over slender bodies. The first such use
will be made in the next section, dealing with hypersonic similarity.

(As a final, parenthetical comment, we now note the importance of obtain-
ing the limiting hypersonic shock relations in Chap. 2. We have alrecady used
these relations several times for important developments. For example, they
were used to help demonstrate Mach number independence in Sec. 4.3, and they
were instrumental in helping to define the proper nondimensional variables in
the hypersonic small disturbance equations obtained in this section. So the work
done in Chap. 2 was more than just an academic exercise; the specialized forms
of the oblique shock retations in the hypersonie limit are indeed quite useful.)

4.5 HYPERSONIC SIMILARITY

The concept of flow similarity is well entrenched in fluid mechanies. In general,
two or more different lows are defined to be dynamically similar when: (1) the
streamline shapes of the flows are geometrically similar; and (2) the variation of
the flowfield properties is the same for the differcnt flows when plotted in a
nondimensional geometric space. Such dynamic similarity is ensured when:
(1) the body shapes are geometrically similar, and (2) certain nondimensional
parameters involving free-stream properties and lengths, called similarity param-
eters, are the same between the different flows. See Ref. 5 for a more detailed
discussion of flow similarity.

In the present section, we discuss a speeial aspect of flow similarity which
applies to hypersonic flow over slender bodies. In the process, we will identify
what is meant by hypersonic similarlity, and will define a useful quantity called
the hypersonic similarity parameter.
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Consider a slender body at hypersonic speeds. The governing equations
¢ L3gs. (4.41) (4.45). To these equations must be added the boundary condi-
ns at the body surface and behind the shock wave. At the body surface, the
wotangeney condition is given by Eq. (4.13), repeated below

un, +on, + wn, =0 4.13)
1 terms of the perturbation velocities defined in Section 4.4, Eq. (4.13) becomes
V, +u . +v'n, +wn, =0 (4.46)

1 terms of the nondimensional perturbation velocities defined in Sec. 4.4, Eq.
-40) becomes

1
< 2 + a’)(erz)nx + 5’(Vm T)ny + W’(Vw T)nz =0
2

(0 + 2% + o'ty + wn, =0 (4.47)

1 Eq. (4.47), the dircction cosines n,, n,, and n, are in the (x, y, z) space: these
alues are somewhat changed in the transformed space (X, y, 2) defined in Sec.
4. Letting 71, n1,, and i1, denote the direction cosines in the transformed space,
¢ have (within the slender body assumption)

ne =i, n, =7, n,=n, (4.48)

‘he mathematical derivation of Eqgs. (4.48) is left as a homework problem. How-
ver, the results arc almost intuitively justified, as follows. For a slender body
ligned along the v axis, the unit normal vector at the surface is almost perpen-
icular to the surface. This means that n, is a smal! number, much less than
mity, whereas n, and n, can be close to unity. In the transformed space. the
tope of the body is increased by a factor [/r, and the unit normal vector in the
ransformed space is now more than tilted with respect to the x axis by the
actor 1/1. Hence, the direction cosine with respect to the X axis is now i, =
1/T. Morcover, in the transformed plane, the unit normal vector is still close
nough to being nearly perpendicular to the ¥ axis to justify that n, and 7, are
till close to unity, just as in the case of n, and n,. Hence, we can say that
1, n, and 7, =~ n,. This is a justification for Eqs. (4.48). With the relations

dven in Eq. (4.48), the boundary condition given by Eq. (4.47) becomes

(1 + 2@y, + 0ti, + wol, =0

(I + 2@, + 0'A, + wn, =0 (4.49)

Consistent with the derivation of the hypersonic small-disturbance equations in
Scc. 4.4, we neglect the term of order 2 in Eq. (4.49), yiclding the final result for
the surface boundary condition

i, + 0, + Wi, =0 - (4.50)
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The shock boundary conditions, consistent with the transformed coordi-
nate system. cun be obtained as follows. Consider Eq. (2.3) repeated below

pa (7 + DM, sin’ B
o TG TOME sin f 1 2 23
or
[y M2 sin® f
Pa= < >[M2 sin? B+ 2/(y - 1)] (.51

For hypersonic flow over a slender body, 8 1s small. Hence,

dy dy
sin i fix <d>c> <d>c>T

where (dj/dx) is the slope of the shock wave in the transformed space. Thus, Eq.

(4.51) becomes
5 (7] @yjas),
fa= ( y— 1){(71}7/42)3% M2 12 } (4.52)

Repeating Eq. (2.2) below

= (M2 sin? g — 1) (2.2)

and recalling that j = p/yMZ% t%p,, Eq. (2.2) becomes

P2 1
P e T Msint g
GMI<p,  oMAT T 4 1 (M sin® VERe
_ 1 2}) R dy {
- M2 ¢ ) —
P2 yMZE i: <dx> j]yMiTz
_ N Z(dy/d\)z 2
Y Y RGP T VER
5 2R G D=2

y 1 9 + DML
_ 2 [/dpNt L 1=y
=l (6], e .

U, 2(M sin® f — 1)
V., (v + DMZ

Repeating Eq. (2.6)

(2.6)
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and recalling that u, =V, + 11, and iy = u5/V, 7%, Eq. (2.6) becomes

1 2IM2 (djld%)? — 1]
P4 2= el s
Y, (v + DMg
Wy (M eA(dydR); — 1]
v, 2 (¢ + M2 ?
2 dy\? 1
ity = — - - - - 4.54
= 7+ 1 [(d;z)s M;r{\ “34)
Repeating Eq. (2.8)
vy _ 2(M?2 sin? /9’ - l),,co,t,[’j 2.8)
v, (y + DM,

and recalling that v, = v, and 0, = v, = v3/V, 1, Eq. (2.8) becomes

v’ 2 [ . 1 1
2 _ g
Vot y+ 11 M3, | Bt

- 2 [/dp\? , 1 1
iy = - P e
Ty \es )T T M | Wyjdo,e

2 [ /dy\? 1 1
= P (455)
oy \dY), ML TP | (difdx),

Fyuations (4.52) (4.55) represent boundary conditions immediately behind the
shock wave in terms of the transformed variables. Note that these equations
were obtained from the exact oblique shock relations, making only the one
assumption of small wave angle; nothing was said about very high Mach
numbers, hence Egs. (4.52)-(4.55) should apply to moderate as well as to large
hypersonic Mach numbers.

Examine carcfully the complete system of equations for hypersonic flow
over a slender body—the governing flow cquations [Eqs. (4.41)-(4.45)], the sur-
face boundary condition [Eq. (4.50)], and the shock boundary conditions [Egs.
(4.52) (4.55)]. For this complete system, the free-stream Mach number M, and
the body slenderness ratio t appear only as the product M, 1, and this appears
only in the shock boundary conditions. As first stated in Sec. 4.4, the product
M, 7 is identified as the hypersonic similarity parameter, which we will denote
by K.

Hypersonic similarity parameter; K =M 1

Important: The meaning of the hypersonic similarity parameter becomes clear
from an examination of the complete system of equations. Since M 1 and 7y are



HYPFRSONIC INVISCID FLOWFIELDS: APPROXIMATE MFTHOQDS 93

the only parameters that appear in these nondimensional cquations. then so-
lutions for two different flows over two different but affinely related bodics
(bodies which have essentially the same mathematical shape, but which differ by
a scale factor on one direction, such as different values of thickness) will be the
same (in terms of the nondimensional variables, @', ¢, etc) if y and M .t are the
same between the two flows. This is the principle of hypersonic similarity.

For aflinely related bodies at a small angle of attack o, the principle of
hypersonic similarity holds as long as in addition to y and M 1, ¢/T is also the
same. For this case, the only modification to the above derivation occurs in the
surface boundary condition, which is slightly changed; for small «, Eq. (4.50) is
replaced by

<ﬁx + ?> 4, + Wi, =0 (4.56)
g s

The derivation of Eq. (4.56), as well as an analysis of the complete system of
cquations for the case of small o, is left to the reader as a homework problem. In
summary, including the cflect of angle of attack, the solution of the governing
equations along with the boundary conditions takes the functional form

Therefore, hypersonic similarity means that, if y, M _ 1, and o/t arc the same
for two or more different flows over affinely related bodics, then the variation
of the nondimensional dependent variables over the nondimensional space, p =
P(X, 7, Z), cte, 1s clearly the same between the different flows.

Consider the pressure coeflicient, defined in Eq. (2.13) as

P Pw _ PP

SpaVE T (/2poa M2

P

This can be written in terms of p as

2p — poy)t? _ I
C = LI 2 _ 57
7 e T @2

Since p = p(X, 3, 2, y, M ,, 1, 2/7), then Eq. (4.57) becomes the following functional
relation:

x

5 =/1<i, Wiy M, T> (4.58)

o

Eal
]
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‘rom Eq. (4.58), we sce another aspect of hypersonic similarity, namely, that
fows over affinely related bodies with the sume values of y, M 7. and 2/t will
ave the same value of € /12,

The viability of hypersonic similarity is reinforced by results which we
1ave already obtained in Chap. 2. In Sec. 2.3, the hypersonic shock relations for
arge M and small deflection angles were obtained in terms of M 6, where 0 is
he flow deflection angle through the shock wave. There, we defined M0 = K
s the hypersonic similarity parameter: this is precisely the same as Mt be-
‘ause, for slender bodics, ¢ ~ tan 0 =~ d/l = 1. Examine Eq. (2.29), and its func-
ional form, namely Eq. (2.30), repeated below

Salrosn @30)
[his states that C /1 for the flow behind an oblique shock (hence, over a wedge
of slenderness ratio 7) is a function of y and K only. Equations (2.45) and (2.46)
sbtained for the hypersonic expansion wave give analogous results. Hence, the
cesults in Sccs. 2.3 and 2.4 are precursors to the concept hypersonic similarity
liscussed in the present section. It is recommended that, at this stage, you re-
cad Secs. 2.3 and 2.4, keeping this point of view in mind.

Hypersonic similarity carries over to lift and wave-drag coeflicients as well.
et us examine this in more detail. To begin with, assume a two-dimensional
>ody of length [, hence a planform (or top-view) area per unit span of ({)(1). The
ift and wave-drag coeflicicnts can be readily obtained by integrating the
yressure coefficient over the surface of the body, resulting in (see, for example,
Refl 5)

!
¢, = E [ (Cp, — Cp)dx (4.59)

»m
Jo

wnd
10
cy = 7 L(Cm +C,)dy (4.60)

In Egs. (4.59) and (4.60), ¢; and ¢, are referenced to the planform area, and C,,
and C, arc the pressure coeflicients over the lower and upper surfaces respec-
tively. Bquation (4.59), written in terms of X, is

1
¢ = j (Cp, — Cpydx (4.61)
0

Dividing Eq. (4.61) by 72, and combining with Eq. (4.58), we obtain the follow-
ing functional relation for ¢,/<*

. 1 )
G j <Egz , 9;) 5 = f2<y, M1, ?> (4.62)
7 o\ TP T T
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[Note that. for a two-dimensional body, 7 = j(%), and there is no variation with
z; hence the integral with respect to ¥ in Eq. (4.62) takes care of the spatial
variation of €, with respect to X, ¥, Z given in Eq. (4.58) resulting, after thc
integrations, in simply the functional variation shown by Eq. (4.62).] To obtain
an analogous cxpression for the wave-drag coefficient, we write Eq. (4.60) in
terms of ¥ as follows:

11t ) 1
=, ( (€, +C,) <1<-‘ )(h) - TJ (C, +C,)dy (4.63)

Jo It 0

Dividing Eq. (4.63) by 1°, and combining with Eq. (4.58), we obtain the follow-
ing functional relation for ¢,/t*:

: qe C
Cizj < g"*‘ Z‘> dy :.f;g(“/,MwT.
T o\ T 72

Summarizing the above results, we have

o . %
S =hinMot

k. T
C4 . o
) 213 }"Moo’[’”
T T

Let us repeat the above arguments, except now for a three-dimensional
body. The considerations are only slightly more involved, as follows. Consider
Fig. 4.3, which shows an arbitrarily body in an x-y-z coordinate system. In an
inviscid flow. the net acrodynamic force is due to the integration of the surface
pressure distribution over the body. Consider an elemental force p dS due to the
pressure acting on the clement of surface arca dS, as shown in Fig. 4.3, The

@R

> (4.64)

referenced to planform area

FIGURE 4.3
Arbitrary body.
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component of this force in the z direction is p dx dy, where (dx dy) is the projec-
tion of dS into the x-y plane. Hence the lift L is

L= jj p(x, v, 2) dx dy (4.65)

s

In terms of the transformed variables, Eq. (4.65) becomes
L= [ﬂ P, y, 2}y dx dﬁjl(w M2 T)T) (4.66)
N

We define the lift coeflicient for the three-dimensional body as C, = L/g..S,
where ¢, = (7/2)p,, M2 and the area S is taken to be the base area (in contrast
to the planform area, used for our two-dimensional case above). Letting b, and
b, be the half width and half height of the base respectively (as shown in Fig.
4.3y, then S o b b, = b,h(1%). Note that S is proportional to 2. Hence, from
Eq. (4.66),

5 i
C, < - Uj (%, §, 2) d< (l_ﬁ:|(",'pm M2 1% X(1) (4.67)
yp, Mo T

Recall that p(x, 1, 2) is obtained from the solution of the hypersonic small distur-
bance equations for a given 9, M 7, and a/t. Therefore, the surface integral
given in Lg. (4.67) depends only on p, M 1, and «/t. With this in mind, Eq.
(4.67) leads to the functional relation

C, . o
S =Fiyn M 1, - (4.68)
T T

Returning to 14g. 4.3, the component, of p dS in the x direction is p dy d=.
Hence, the drag D is

D= ﬂ plx, vy, z)dy dz

S

n= Hj PR, ¥, 2) dF d:"}()'pri‘o 2)(?)
=

D 2
Cp= - .o ~ & . P(%, 7, 2) d¥ dZ |(yp M2 12)(12
PTs o ip M3 2 an(x P 2)dy ¢ ](mm ®TNT*)

or

C
2 = Fal Moy of7) (4.69)
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Summarizing the above results, we have

o -

-t =Fi(y, M, 1, 0/1)

T

c referenced to base arca
)= Fa(p M, T, %/7)

22

Examine the results summarized in the two boxes above, namely the results for
¢, and ¢, for a two-dimensional flow, and C; and C,, for a three-dimensional
flow. From these results, the principle of hypersonic similarity states that affinely
related bodics with the same values of y, M 1, and a/t will have: (1) the same
values of ¢,/t% and ¢,/t° for two-dimensional flows, when referenced to planform
area; and (2) the same values of C,/t and C,/t? for three-dimensional flows
when referenced to base area.

The validity of the hypersonic similarity principle is verified by the results
shown in Figs. 4.4 and 4.5, obtained from the work of Neice and Ehret (Ref. 26).
Consider first Fig. 4.4a, which shows the variation of C,/c* as a function of
distance downstrcam of the nose of a slender ogive-cylinder (as a function of
x = x/I. expressed in percent of nose length). Two sets of data are presented,
cach for a different M, and 7, but such that the product K = M, v is the same
value, namely 0.5. The data are exact calculations made by the method of char-
acteristics. Hypersonic similarity states that the two scts of data should be iden-
tical, which is clearly the case shown in Fig. 4.4a.

A similar comparison is made in Fig. 4.4b, except for a higher value of the
hypersonic similarity parameter, namely K = 2.0. The conclusion is the same;
the data for two different values of M, and 7, but with the same K, are identi-
cal. An interesting sideline is also shown in Fig. 4.4bh. Two different methods of
characteristics calculations are made-—onc assuming irrotational flow (the solid
line), and the other treating rotational low (the dashed line). There are substan-
tial differences in implementing the method of characteristics for these two cases
(see, for example, Ref. 4 for more details). In reality, the flow over the ogive-
cylinder is rotational because of the slightly curved shock wave over the nose.
The effect of rotationality is to increasc the value of C,, as shown in Fig. 4.4,
This effect is noticeable for the high value of K = 2 in Fig. 4.4h. However, Neice
and Ehret state that no significant differences between the rotational and irrota-
tional calculations resulted for the low value of K =05 in Fig. 4.4a, which
s why only one curve is shown. One can conclude from this comparison the
almost intuitive fact that the effects of rotationality become more important as
M, 1, or both are progressively increased. However, the main reason for bring-
ing up the matter of rotationality is to ask the question: Would we expect hy-
personic similarity to hold for rotational flows? The question is rhetorical,
because the answer is obvious. Examining the governing flow equations upon
which hypersonic similarity is based, namely Eqs. (4.41)-(4.45), we note that
they contain no assumption of irrotational flow—they apply to both cases.
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FIGURE 44
Pressure distributions over ogive cylinders, iflustration of hypersonic similarity. (@) K = 0.5, (b) K =
2.0. (From Ref. 26.)
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FIGURE 4.5

Cone pressure at angle of attack, correlated by hypersonic similarity. (From Ref. 26.)

Hence, the principle of hypersonic similarity holds for both irrotational and
rotational flows. This is clearly demonstrated in Fig. 4.4h, where the data calcu-
lated for irrotationa! flow for two different values of M, and < (but the same K)
fail on the samc curve, and the data calculated for rotational flow for the two
different values of M, and t (but the same K) also fall on the same curve (but a
different curve than the irrotational results).

Figures 4.4¢ and b contain results at zero angle of attack. For the case of
bodies at angle of attack, our similarity analysis has indicated that o/t is an
additional similarity parameter. This, as well as the general principle of hyper-
sonic similarity, is experimentally verified by the wind-tunnel data shown in Fig.
4.5. Neice and Ehret (Ref. 26) reported some experimental pressure distributions
over two sharp, right-circular cones at various angles of attack obtained in the
NACA Ames 10- by !4-in supersonic wind tunnel. The free-strcam Mach
numbers were 4.46 and 2.75. and the cones had different slenderness ratios such
that K = 0.91 for both cases. Since the flow was conical, the values of C, on the
surface were constant along a given ray from the nose, but because of the angle
of attack C, varied from one ray to another around the cone as a function of
angular location. Note in Fig. 4.5 that the data along any given ray for the two
different values of M, and t (but both such that K = 0.91) fall on the same
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irve when plotted versus «/1. Hence, the data in Fig. 4.5 is a direct cxperimen-
1 verification of hypersonic similarity for bodies at angle of attack. (Note that
t # =0, all the curves pass through the value of C, predicted from exact cone
icory, as tabulated by Kopal in Ref. 17.)

It is interesting to note that hypersonic similarity appears to hold even at
ery moderate hypersonic Mach numbers (the data in Fig. 4.5 even shows some
orrelation at supersonic Mach numbers). Indeed, Van Dyke (Ref 27) has
ointed out a4 combined supersonic-hypersonic similarnity rule that replaces M, ©

/ith r\/MZ,J — 1. which closely approximates M _ 1 at high values of M, . By

cplacing M, © with r\/MZD — 1, a single smmilarity rule holds for the entire
Aach number regime starting just above the transonic range and going to an
finite Mach number. Sec Ref. 27 for more details.

Question:  Over what range of values of K = M, v does hypersonic simi-
writy hold? The answer cannot be made precise. However, many results show
hat for very slender bodics (such as a 5° half-angle cone), hypersonic similarity
wlds for values ol K ranging from less than 0.5 to infinitely large. On the other
iand, for less slender bodics (say, a 20° half-angle cone), the data do not corre-
ate well until K > 1.5. Homework problems 4.4 and 4.5 are very instructive in
his regard. However, always keep in mind that hypersonic similarity is based on
he hypersonic small-disturbance equations, and we would expect the results to
secome more tenuous as the thickness of the body is increased.

An important historical note is in order here. The concept of hypersonic
imilarity was first developed by 11, S. Tsien in 1946, and published in Ref. 28.
n this paper, Tsicn treated a two-dimensional potential (hence irrotational)
low. This work was further extended by Hayes (Refl. 29) who showed that
Tsien’s results applied to rotational flows as well. (As noted earlier, the develop-
nent of hypersonic similarity in the present chapter started right from the begin-
ing with the governing cquations f{or rotational flow. There is no need to limit
surselves to the special case treated by Tsien.) However, of equal (or more)
historical significance, Tsien's 1946 paper seems to be the source which coined
the word hypersonic. Afler an extensive search of the literaturc, the present
author could find no reference to the word “hypersonic” before 1946. Then, in
his 1946 paper—indeed, in the title of the paper—Tsien makes liberal use of the
word “hypersonic,” without specifically stating that he is coining a new word. In
this sense, the word “hypersonic” seems to have entered our vocabulary with
little or no fanfare.

4.6 HYPERSONIC SMALL-DISTURBANCE
THEORY: SOME RESULTS

Return to our roadmap in Fig. 1.23. We are presently working under the general
heading of flowficld considerations, and we have, so far, treated both the con-
cepts of Mach number independence and hypersonic similarity under this head-
ing. Recall that we have discussed the general partial differential equations for
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an inviscid fow (Sec. 4.2), from which we have obtained the hypersonic small-
disturbance equations (Sec. 4.4). It is important to note that, in our discussions
of both Mach number independence and hypersonic similarity, we have only
examined these equations—we hare nar solved them. Specifically, our examina-
tion of a nondimensional form of the Euler equations and the boundary condi-
tions in Sec. 4.2 clearly demonstrated the mathematical justification for Mach
number independence. Similarly, our examination of the hypersonic small-dis-
turbance cquations and the boundary conditions in Scc. 4.4 led to the important
conclusions dealing with hypersonic similarity. But iz both cases, we did not
actually solve the governing equations. This is as far as we can proceed in such a
fashion: for the remainder of the items listed under flowfield considerations in
Fig. 1.23, we will deal with actual solutions of the governing equations for spe-
cific cases. This will constitute the remainder of the present chapter (on approxi-
mate methods) as well as all of Chap. 5 (on “exact™ methods).

Consider again the hypersonic small-disturbance equations given by Egs.
(4.41)-(4.45). The purpose of the present section is to discuss how these cqua-
tions can be solved for the hypersonic flow over slender bodies, The material in
this section is a representative sample of a bulk of solutions gencrated over the
past 35 years. all originating with Eqgs. (4.41) (4.45). Such solutions come under
the general description of hypersonic small disturbance theory. This theory was
first developed in some detail by Milton Van Dyke (Ref. 30), and we will partly
follows his approach in this section.

To begin with, consider the hypersonic small-disturbance equations written
for two-dimensional flow, and recall that the x-momentum equation is de-
coupled from the remainming equations in the system. For this case, from Eqgs.
(4.41), (4.43), and (4.45), we have

20 oo’
P o)

S 0 4.70
FEET (70)
00’ ov op

P i - @71
ox oy oy

a/p L o0/p
o + 0 = )= 0 (472)
ex A\ p? oy \p

which are three cquations to be solved for the three unknowns, ', p, and p.
However, this system can be reduced to just one equation in terms of one un-
known by introducing a stream function ¥, defined as

2
Tl{ =p (4.73)
o3
and
Yo e (4.74)
0x
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‘o be a valid stream function, ¥ must satisfy the continuity equation. Substitu-
ion of Egs. (4.73) and (4.47) into (4.70) yields

g [
Aol )+
ox \ 0y

oM My 0

X0y 0x0y

A l
(,_ * S/f -0
0y 0%

hat is, i as defined in Egs. (4.73) and (4.74) does indeed satisfy the continuity
-quation. Using the subscript notation for partial derivatives, Eqgs. (4.73) and

4.74) become

ind

(4.75)

(4.76)

Also, denote p/g” by o, where w is a function of ¥ only. This is true because, for
in isentropic flow, p/p” is constant along a streamline, and by definition of a
stream function (see, for example, Refl. 5), i is also constant along a streamline.

Hence

or

From Eq. (4.76),

and

From Eq. (4.78)

Since

[: = w(f)
P

p=wp =wl)

L S N
0x (‘//p)z

o =y + Usisy

o5 h)*

op

duy dn\ s y
— = —)=-=wy;
oy o) oy Y

Prie oy g + O <
B {

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)
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then Eq. (4.81) becomes

e

—‘; 1

= yo(yrgy N (1)'(\//;)"+1 (4.82)

A
&

Substitute Eqgs. (4.75), (4.76), (4.79), (4.80) and (4.82) into the y-momentum
equation. Eq. (4.71).

S s | st sy
"‘[ e ]” ‘/’")[ W5 J

= —y(fs) " Ny — @' ()"

or

W) es — et + (h) sy = W) Doty + 0/ (95)°) \ (4.83)

Equation (4.83) is a single equation for a single unknown, namely ¥, based on
the hypersonic small-disturbance assumptions. Note that in the development of
this equation. no additional assumptions werc made (other than that of two-
dimensional flow); hence Eq. (4.83) is of the same order of accuracy as the
original hypersonic small-disturbance equations.

Equation (4.83) holds for two-dimensional planer flow, hence it can be
applied to two-dimensional shapes such as airfoils. On the other hand, for
axisymmetric bodies a cylindrical coordinate system (x, r, ¢h) is more convenicnt,
where x and r are the coordinates parallel and perpendicular respectively to the
body centerline, and ¢ is the familiar azimuthal angle. For an axisymmetric
body at zero angle of attack, the flowficld is independent of ¢, and depends on x
and r only. For this case, the governing hypersonic small-perturbation equations
become

op O
W AT | P

-0 .

0x oF F (484)
o v op 155
PR/ o~ " F (4.83)

& /p e _
P (;) + 0 o <ﬁr)> =0 (4.86)

These are the same as Egs. (4.70)-(4.72), except for the additional term in Eq.
(4.84). In the above, X =x/l, F=r/t/, ¢ is the nondimensional perturbation
velocity in the 7 direction, and all the other quantities are the same as before.
For the axisymmetric flow described by Eqgs. (4.84)-(4.85), a stream function ¥
can be defined as

Y (4.87)
Cr
)
Y (4.88)



104 INVISCID HYPLRSONIC FLOW

A derivation similar to that for Eq. (4.83) leads to the following equation for
axisymmetric flow (the dcrivation is left to the reader as homework Problem
4.6).

(W) s — 20 + (U)W

(ll/ )/H [:/(U(l//—- - l’b;> + w'(t//;)z] (4.89)

Equation (4.89) is the axisymmetric analog to Eq. (4.83). As before, it is a single
¢quation in terms of one unknown, namely . In principle, Eq. (4.89) is easicr to
solve than the original coupled system of three equations, namely Egs.
(4.84)- (4.86).

We will illustrate a solution of Eq. (4.89) for the case of flow over a slender
right-circular cone at zero angle of attack. For this case, we take advantage of
the nature of conical flow, namely, that flow properties are constant along any
ray emanating {rom the cone vertex. Consider the sketch shown in Fig. 4.6.
Along any ray making a slope r/x with respect to the centerline, the flow prop-
srties are constant. For this ray, we define a conical variable 0 such that

{

¥

iIf

><| “\

4.90
T ax (4.90)
In addition, for conical flow the stream function W(%,) can be expressed as
U function of % and 0 through Eq. (4.90), where 7= %0. A proper form for
= (X, 0) applicable to conical flow is

W= 221(h (4.91)

An intuitive justification for Eq. (4.91) can be obtained from Fig. 4.6. Recall that
for two-dimensional flow the difference in ¥ between two streamlines 1s equal to
the mass flow between these streamlines; for an axisymmetric flow, the difference
m iy between two stream surfaces (designated 1 and 2 in Fig. 4.6) 1s cqual to the
mass flow between these surfaces. This mass flow is proportional to the circular
ring of area between stream surfaces 1 and 2, which in turn is proportional to »?
and thus to 72 Hence, it makes sense to define the stream function as i =
Fg(0), where 72 is proportional to the area, and g(0) yields the flow properties
necessary to complete the mass flow expression. However, since 7 = %0 from Eq.
(4.90), then W = 2g(0) = £20%¢(6) = 3*(D), which is Eq. (4.91). We wish to sub-
stitute this expression for v into Eq. (4.89). To do so, we need expressions for
the derivatives of 1, constructed below. In the process, keep in mind that y =
(D), and that we are essentially transforming from one set of independent
variables, ¥ and 7, inte another set, ¥ and 0, where ¥ =% and 0 = 7/. For
2xample, from the chain rule:

AN AN AW
()~ (o) ) (), -
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Transformed variables {_ )
F=rit

0. = cone angle

f = shock angle

Transformed conical variable;

0 =ri=r/tx

FIGURE 4.6
Flow mode! for a cone.

where the subscripts arc added to remind the reader what independent variable
is being held constant for each of the partial differentiations. From Eq. (4.91)

oy rp A
<P—5>_ = (D) (4.93)
where //(0) = dfjd. Also, from Eq. (4.90),
a0 1
)T (4.94)

Since x is being held constant in (8X/0F)z, then

0%
( ) (4.95)

Substituting Eqs. (4.93)-(4.95) into (4.92), and using the subscript notation for
partial derivatives, we have

!
it
()

™
T

W= 3f(0) (4.96)
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Similarly, from the chain rule applied to ¥,

oz e
w”:<a}'> <ao> <ar>_+

or
Vs = 17(0)

Also, from the chain rule

_ (% _ Nz 20
Ve = <’5.€ >; B <55 > <5"> '

From Eq. (4.90)

Noting that (9%/0x), = 1, and utilizing Eq. (4.99), Eq. (4.98) becomes

o\ (0%
G5,

Ly ”(U)J< 7 ) 1)

(<

or
Yz = — f”(0)+f(0) —0r"®) + f6)
Similarly, from the chain rule,
ve=(5) -G (5), - (5),(5),
or
e =[5 wn( ) L2500~ —7'0) + 290)
or

Y = — SO0 + 29/(0)

Similarly, from the chain rule:

N ops\ (00
v (), () )

%

5\ (%
7 \0% J;

0x

497

(4.98)

(4.99)

(4.100)

(4.101)

(4.102)
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s
<7(') >

From Egq. (4.101)

—%07"(0y — %f'(0) + 2%f(0)

i

— &0y + 30 (4.103)
and

4

<(’fjb§> = 0D + 2/ (H) (4.104)
ax /5

Substituting Eqgs. (4.103) and (4.104) into (4.102), we have

r

) +21(0) — 07 (0)

X

Yoo = [—x0/"(0) + .%_/"(0>]<~

="l - ) + @) - O

w

= 0%1"(0) — 0f"(0) + 2f (0) — 01(0)
or
sz = 02170y = 20(0) + 2/ (D) (4.105)

We have now completed all our derivative transformations. Substituting Eqs.
(496), (4.97). (4.100), (4.101) and (4.105) into (4.89), and noting that o’ =
dw/d0 = 0 because the entropy. hence w, is constant between the shock wave
and the body. we have

RSO = 20 + 2) — 2 —S0f" + 2%/ ) W= + /)
Sy tigpnyy+t =f
b s+ aspy = 0D [(1 - f)]
(Fy F
Dividing by 2, and grouping cocflicients of like powers of §, this becomes
P = 2000+ (SOD + 0L=20f) + 2/ + 4 — 4ff )
27— apryr =S U [w»(f” - */ﬂ
(A i

Recalling that #/% = 0, and noting that the terms within the squarc brackets
cancel each other, the above equation becomes

2 ey S S
AT =2AoYY =0 @y <f (—)>
or, rearranging
S A I ) L
o (7 ()2 1
S = e gy T U (4.106)
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Equation (4.106) is the governing equation for hypersonic flow over a slender
cone. It was obtained from the system of hypersonic small-disturbance equa-
tions; indeed, it replaces that system with a single ordinary differential equation
in terms of one unknown, namely f(G). When a system of partial differential
equations is replaced by onc or more ordinary differential equations in terms of
onc independent variable (in this case, (), then the solution is said to be self-
similar. Such is the case here. However, this should be no surprise; the Taylor-
Maccoll equation for the exact solution of conical flows (sce, for example, Ref.
4y 1s also an ordinary differential equation. Hence, Eq. (4.106) can be viewed as
the approximate counterpart of the Taylor-Maccoll equation, applicable to
hypersonic flow over slender cones.

Question.  Why have we gone to such length to obtain Eq. (4.106), when
we could more casily usc the exaer Taylor-Maccoll results to obtain hypersonic
(as well as supersonic) flow over cones, as tabulated, for example, in Refs. 17
and 187 The answer lics in the fact that, in the present section, we are demon-
strating an actual solution of the hypersonic small-disturbance equations, and
we have chosen to treat the case of a cone specifically because an exact solution
exists. In this fashion, by comparing the results, we can obtain some feeling for
just how accurate this small-disturbance theory is. Morcover, we will also dem-
onstrate how the hypersonic small-disturbance theory leads to a closed-form
analytical solution for flows over cones—an advantage not to be enjoyed by the
exact numerical Taylor-Maccoll results. Therefore let us proceed to solve Eq.
(4.106).

Our next step in treating Lq. (4.106) is to recall that w = p/p’, and to
recognize that  is a constant for the isentropic conical flow, equal to its value
beliind the oblique shock wave. An expression for o can be obtained directly
from the hypersonic shock wave relations derived in Sec. 4.5. Examine Egs.
(4.52) and (4.53) for p and p respectively. For flow over a cone, the shock wave
is a straight oblique surface, with a constant transformed slope, ie., in Egs.
(4.52) and (4.53), (dy/d%), is constant. Moreover,

Iy 1d
‘{ =y (4.107)
di /), tdx
But for hypersonic flow over a slender body
Iy
' tan frtanl. =1 (4.108)
dx

where 0, is the cone angle. Combining Eqs. (4.107) and (4.108), we see that

<‘]:V;> ~ | (4.109)
dx J,

Inserting the results of Eq. (4.109) into Egs. (4.52) and (4.53), and returning to
the definition of ), we obtain

. 1_) 2 - 1 — ¥y y — 1\7 1 2 ¥
= = I - -
oyt ML Ny + 1 fo-nMie
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Noting that M, t = K. the hypersonic similarity parameter, the above equation
can bec written as

2 [y—=1Y -y 2 4
D= - R | I I 4110
T < & 1>< 2v1<‘>[ G- 1>K~J @1o

Clearly, «) = o(K); it is a constant for a given flow with a given value of K.
Reflecting again on Eq. (4.106), the solution to the flowficld in the form of f(0)
will depend on K as a parameter because w in Eq. (4.106) is a function of K.
This is yct another example of the close relationship between solutions of the
hypersonic small disturbance cquations, hypersonic similarity, and the hyper-
sonic similarity parametcr, K.

The solution of Eq. (4.106) must satisfly boundary conditions at the body
and behind the shock wave. Let us address these boundary conditions by first
noting the values of § on the body and at the shock wave. At the body (the
surface of the cone with semiangle 0,)

= I Y.
}L.=’:—:

X

]

(

=

4

b

However, from Fig. 4.6, r./x is precisely 7. Thus, from the above equation,
At the body 0=0,=1

At the shock wave, with wave angle f3,

o (4.111)

From Fig. 4.6, and noting that, for hypersonic flow over a slender body, f§ is
small,

¥
T=tanBxf (4.112)
X

Thus, combining Eqgs. (4.111) and (4.112),

_ 3
0=-tanfi = f (4.113)
T T

From Fig. 4.6, for a slender cone, we note that

;
1= ‘“=tanl. ~0,
e

Hence, Eq. (4.113) can be written as

i< A/}_ B _shocl:zmglj
=0="=5=

At the shock

o~

(4.113a)

. coneangle

The boundary conditions for Eq. (4.106) are the known values of f(1) at the

surface and f(f/7) and f'(f/7) at the shock wave. These values are known as
follows. First, at the surface we know (by definition of the stream function) that
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Y = 0. From Eq. (4.91) applied at the surface, we have y = 32((0) = 7%f(1) = 0.

Thus, the body boundary condition s

Atthe body f(1)=0 (4.114)

At the shock wave, we can obtain values of both f and f’ by using Eqs. (4.96)

and (4.101) as follows. From Tiq. (4.96)
(4.115)

=¥
X

Substituting Eq. (4.115) into (4.101), we have

o= —' 4 28 = — i + 2 (4.116)
X
Substituting Eqgs. (4.87) and (4.88) inlo (4.116), we obtain
CRPE = () + 2%
X
Solving for f,
M 5 "\o (4.117)
f—2 el Pl PP .
At the shock wave, Eq. (4.117) becomes
" (4.118)

-4
AT 21\X X
ITowever, as noted in Gq. (4.113a),

oo o=
=0, =
s

Hence, Eq. (4.118) becomes
f AN
At the shock /</> =7 [</> - </3>5:! (4.119)
A\t 2|\ T

1o obtain /7 at the shock, substitute Eq. (4.87) into (4.96)

=

At the shock, this becomes
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At the shock f’(f) = <ﬁ>/3 (4.120)
T

In both Egs. (4.119) and (4.120), the values of p and ¢ are those values imme-
diately behind the shock wave, given by Eqs. (4.52) and (4.55), respectively. Re-
calling from Eq. (4.109) that (d3/d%), = 1 and noting that Mt = K, then Eq.
(4.52) becomes

Thus,

o+ 1 1
s e 4121
TS {1 + 216 — 1>1<21} (120
and Eq. (4.55) becomes

v’ 2 I ! 4.122
Ui;'+l(‘K2> “.122)

In summary. the boundary conditions for Eq. (4.106) arc given by Eq. (4.114) at
the body. and Eqgs. (4.119) and (4.120) at the shock wave, wherein the values of
g and & in Egs. (4.119) and (4.120) are given by Eqs. (4.121) and (4.122).

We are now in a position to set up a straightforward numerical solution to
Eq. (4.106) for the hypersonic flow over a slender cone. In most practical cases,
we arc interested in the flow over a cone of specified angle 8, (or equivalently
specified slenderness ratio, 1) with a specified M. However, keep in mind that,
within the framework of hypersonic small-disturbance theory, M, or t individu-
ally arc not germain; the solutions depend only on the product, M ,t = K. Scan
over the cquations we are dealing with, namely Egs. (4.106), (4.110), (4.114), and
(4.19)-(4.122): note that K is the parameter that appears, not M, or T by them-
sclves. (1 also appears in the ratio fi/z, which 1s one of the unknowns of the
problem—to be obtained as part of the solution.) Therefore, let us specify the
valie of K, and set up a numerical solution for this value of K as follows:

1. Assume o value of B/t (a suggested value might be 1.1 for y = 1.4). Note that
this establishes an assumed value for the shock wave angle f.

2, Starting at { = f/r. that is. starting at the shock wave, with boundary values
of f(f/7) and f'(f/r) given by Eqs. (4.119) and (4.120), respectively, numeri-
cally integrate Eq. (4.106) in steps of (—Af), that is, in the direction of de-
creasing (. that is, starting at the shock wave, integrate Eq. (4.106) in the
direction toward the body. This integration can be carried out by any stan-
dard numerical technique for a nonlinear ordinary differential equation. such
as the Runge-Kutta method.

3. Continue this intcgration untit { reaches the value 0 = 1. Then check to see if
the body boundary condition, Eq. (4.114), is satisfied; ie., is the relation
J (1) = 0 satisfied by the numerical integration? If not, assume a new value of
Sz, and repeat steps 2 and 3. Repeat this process until the proper value of
f/t 1s found such that f(1) = 0.
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4. We have now arrived at the final result. For the specified value of K, we have
found the ratio of wave angle to cone angle, fi/r, and we have obtained nu-
merical values of £ and f” between the shock (where 0 = fi/7) and the body
(where () = 1).

After the above numerical procedure is completed, the conventional flow field
variables can be obtained from f and /. For example, from Eqgs. (4.77), (4.78).
and (4.96), we can obtain the pressure as

p=wp = <»<l/lf>le = w<fj;>7 = a)<‘—f;,>? (4.123)
r r 0

In turn, the pressure coefficient can be obtained from

2 p 2 P 2 5
O I T o
Ve </>1, ) *,'M;,[pvaifz(' L ]

2
= o [T 1)

i

Dividing by t% and noting that K = M 1, the above equation becomes

S 2 ik 1
Tz"sz(l [7

Substitating Eq. (4.123) into the above, we obtain

. 2 Ny
Cf = | vK*o) j_ — 1 (4.124)
> yK* 4

The pressure coeflicient on the cone surface can be obtained by inserting ( = 1
and the numerically obtained value of f'(1) into Eq. (4.124).

A numerical solution to the above problem was first obtained by Van
Dyke (Ref. 30). Van Dyke’s formulation differs from our derivation above in
that lie defines K as M f3, and utilizes f§ instead of 7 in the nondimensional
variables. This has an advantage in the numerical solution of Eq. (4.106) be-
cause his conical coordinate is defined as r/fix [in contrast to our r/tx, from Eq.
(4.90)]. In turn, r/fix at the shock wave is unity, and hence /(1) and (1) denote
values at the shock wave, in contrast to our formulation where f(f/7r) and
J'(B/1) denote values at the shock wave. Because 3/t is an unknown, we were led
to an iferative numerical solution, assuming values of 8/t until we converged on
the proper body boundary condition. In Van Dyke’s approach, no iteration is
necessary; starting with f(1) and f'(1) at the shock, he simply integrates until
/=0 (the body boundary condition). The value of his conical coordinate at
/ =0 yiclds the ratio of wave angle 1o cone angle. For pedagogical reasons, we
have deliberately chosen not to follow Van Dyke in this regard; instead, we
maintained a consistent usage of the body slenderness ratio 7 (instead of f), and
K =M _z, throughout our development, because such usage was introduced
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right from the beginning of this chapter having to do with hypersonic similarity,
where K was initially defined as M, 1 (not M, ). Moreover, in practical apph-
cations, involving a given body. we know 1, while B is usually an unknown;
hence the practical hypersonic similarity parameter is M 1, not M fi. Of
course, in the final solution, the flowfield results are the same, no matter which
approach is taken.

Figure 4.7 shows the final results for C,,/rl on the surface of the cone, as
reported in Ref. 30. Note from our numerical solution that a specific value of
C,/7* on the cone corresponds to the specified value of K. When another value
of K is chosen. another value of C,/t? is oblained from the solution, that is,
C,/t* is a function of K, as known from our previous work. This function is
given by the numerical results shown in Fig. 4.7, where C,/7° is plotted versus
K = M, r. The upper line is the present numerical solution; the two lower lines
are exact conical flow results from Kopal (Refl. 17) for cones of 10 and 15° half
angles. (The solid circles in Fig. 4.7 correspond to a closed-form analytical ex-
pression, to be discussed subscquently.) The value of Fig. 4.7 is that 1t illustrates
the degree of accuracy of the hypersonic small-disturbance theory when com-
pared with exact results; rcasonable accuracy is indeed obtained over a wide
range of valucs of K. The agreement is better for the more slender cone, as
expected. Recall our carlier statement that the application of hypersonic small-
disturbance theory to the flow over a cone is given here partly as an academic
exercise-—an exercisce to demonstrate for a relatively simple flow what the hyper-
sonic small-disturbance theory is all about.

There is another reason for treating the case of a cone. For this case, the
hypersonic small-disturbance theory leads to a closed-form analytical result {or
C, and f for a given © and M,,. This now becomes much more than just an

40—
® Rasmussen (Ref. 31)
Eq. (4.126)
.
Van Dyke's
/ small-disturbance
\\ theory (Ref. 30)
S 3k N
TZ
Kopa! T
(Rel. 1) Jt =
2 L
0.333 0.5 1 ©
M, T
FIGURE 4.7

Cone surface pressure: comparison between exact theory (Ref. 17), hypersonic small-disturbance
heory (Ref. 30), and analytical formula (Ref. 31)
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lemic exercise, because a closed-form analytic result for C, for hypersonic
over cones allows some very practical engineering calculations. For exam-
the tangent-cone mcthod discussed in Sec. 3.6 becomes even simpler and
¢ useful if we have a formula for C, on a cone, rather than constantly having
sok up values in the Kopal tables (Ref. 17). Moreover, for certain optimiza-
studics of hypersonic vehicles using the calculus of variations, a closed-form
ression for C, is absolutely necessary. Therefore, we will end this section by
ussing such closed-form results, thus illustrating one of the most useful
antages of hypersonic small-disturbance theory.

Starting with Eq. (4.106), Rasmussen (Ref. 31) integrated twice from the
ck wave, obtaining an integral equation for f(f). By successive approxima-
1, this led to closed-form analytical expressions for both f(J) and f/(0) as
ctions of 0. The details are described in Ref, 31, which the reader is encour-
d to examine: hence, no further elaboration will be given here. Utilizing the
*that f(0) = 0 at the body surface, Rasmussen obtained the following closed-
m expression for the shock wave angle:

41 1
K, = K/rff. o (4.125)

2 K?

ere K,y =M B. Furthermore, by substituting his closed-form result for f({)
o Hq. (4.124), Rasmussen obtained the following expression for the pressure
:ficient on a cone:

c, (y+ DHK2 42 y+ 1 1
bl T 1Y 4.126
;7 ek a2 * (120

his analysis, Rasmussen approximated = = tan {, by 0, itself; hence, in Eq.
[126), K = M, 0. Results from Eq. (4.126) are plotted as the solid circles in
2. 47. Note that Eq. (4.126) agrees well with the numerical results of Van
vke when K > 1. Rasmussen observed that Eq. (4.126) agrees well with the
.act cone results [say, from Kopal (Ref. 17)] when 7 1s small and M, is large;
ywever, better agreement for larger values of 1 is obtained when =~ (0, 1s re-
laced by sin @),. These results are shown in Fig. 4.8, where C,/sin? 0, is plotted
xrsus M, sin 0. The open symbols are exact results from Kopal, and the solid
ne is from Eq. (4.126), with 0, replaced by sin 0.. Excellent agreement is ob-
ined, even for a reasonably large cone semiangle of 30°.
Doty and Rasmussen (Ref. 32) extended this work to include angle-of-
ttack cffects. Defining the normal force coeflicient as

N

Cyv=,
YN Y
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28 o
B m(s) }Kop‘\I(Rd 17

—  Eq.(4.126)
v=14

22
= 0
2,0 | 1 g ! I ! ! |
0 2 4 6 8 10
K =M, sinf,

FIGURE 48
Cone surface pressure: Comparison of Rasmussen’s formula (Ref. 37) with exact results (Ref. 17).

where A = base arca. a closed-form expression for the slope of the moment co-
efficient curve, dCy/d2. was obtained in the following form:

1dCy 1 LI B R
cos? 0\ da 0(1 ey + 1 9\ fo ¥+ 1

l—y . 1+¢ I+ f‘”7
~<-—~2-- )(1~1.)[1 + ( JT:T;)] @17

24+ (- DMLY Sin 0

O G+ M2 sin? 0

where

and

=9
9n

—0=3 14 (s

ED (1 —2)'? &2
~ (G +5) L4l (1 =)

G+D ~u.>‘/’ e

gy=1(5~— 10)(1‘5‘0)—2(2_%)

gp =501 —£)* +2(2 ~ Eo) -
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20 v
Ao)
le]
1.6
~— Approximate theory, Eq. (4.127)
C O 0= 25"
it CO T Y v 0 =10° ? Exact values, Sims (Ref. 34)
cos? 0 o 8= 30°
0.8}
04
0 | | | 1 |
0 2 4 6 8 10
M, sin 0

FIGURE 4.9
Stope of the normal (orce coefficient for slender cones. Comparison between Rasmussen’s formula
and exact resulis.

The results for dCy/do are shown in Fig. 4.9, where Lq. (4.127) 1s compared with
the results of Sims (Ref. 34),

A further extension to elliptic cones at angle of attack is made in Ref. 33
which should be consulted for details.

s

47 A COMMENT ON HYPERSONIC
SMALL-DISTURBANCE THEORY

Small-disturbance (small-perturbation) theorics abound in aerodynamics. In the
arcas of subsonic and supersonic acrodynamics, the small-perturbation approach
leads to hnear theories, with correspondingly simple results. (See, for example,
Refs. 4 and 5.) In contrast, hypersonic flow is inherently nonlinear—even the
small-perturbation theory for hypersonic flow is nonlinear. As a consequence,
the hypersonic small-disturbance theory is more elaborate, and leads to more
complex results. For proof, just compare the lengthy discussions we have pre-
sented in this chapter with the analogous simple-discussions for subsonic and
supersonic flow that you can find in standard textbooks, such as Refs. 4 and 5.
However, in spite of its nonlinearity, hypersonic small-disturbance theory does
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provide uscful results for the analysis of hypersonic flow over slender bodies-—
witness the principle hypersonic similarity (Sec. 4.5), the self-similar solutions
obtained in Scc. 4.6, as well as the closed-form analytical expressions presented
at the end of Sec. 4.6. For these reasons, hypersonic small-disturbance theory
occupies a relatively high status within the general class of approximate flowfield
solutions for hypersonic flow.

Referring to our roadmap in Fig. 1.23, we now leave this subject, and for
the remainder of this chapter we move on to two other approximate hypersonic
flowficld methods. namely, blast wave theory and thin shock-layer theory.

48 THE HYPERSONIC EQUIVALENCE
PRINCIPLE AND BLAST WAVE THEORY

Return to the Euler equations given in Sec. 4.2, namely, Eqgs. (4.1)-(4.5) and
(4.6). Let us write these equations for an unsteady, two-dimensional flow m the y-
z plane (notc that n our previous work, the x axis is in the free-stream dircc-
tion, hence the y-z planc is perpendicular to the free-stream direction). Since we
are dealing with flow in the y-z plane only, ¥ =0 in Egs. (4.1)-(4.4) and (4.6),
yielding

dp  pr o(pw
/+?(p) o(pw)

)0 4.128
ot dy oz ( L
v N v ap 4.129
- U ) — — -- :
P TP 3) + P dy ( )
ow ow ow ap
I il Sl 4.130
P P TP 2" "o (4-130)
¢ /p o (p Py
o <p'> T <ﬂ> M <ﬂ> ¢13n

o o . w _p
P70, Ty, YT, P
t - y - z
F= — i 5
v,y T I

In the above, p, and V, can be treated as “reference” quantities. You might ask
what physical meaning they have in terms of an unsteady two-dimensional flow
in the y-z pl:mc Indeed, there is no “physical” meaning necessary here; both p

and V_ arc just reference quantitics. However, we will use p, and V. as we
have bcforc, namely, p, 1is some free-stream density and V, is some
free-stream velocity n the x direction, and their physical connection with the
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insteady two-dimensional flow in the y-z plane will be made later. Then Eqgs.
4.128) (4.131) become:

ap ApB)y  Apw
cp opn) W)

v 0 4132
ot T (
NI N 03
=+ i — V= — o= 133
Pa P T"ET T (
LW + ow _ow aop 4134
- W b PW e = — 12
I I TR T (4.134)
AT R CAT N 4.135)
- - W )= .13
o) T e\ a2\ 57 (

Now, with Eqs. (4.132)-(4.135) in sight, turn back to Egs. (4.41)-(4.45), and
compare these two sets of cquations; note that, other than slightly different sym-
bols, they arc identical scts of partial differential equations. On one hand, Eqs.
(4.41) (4.45) are the hypersonic small-disturbance cquations, which govern the
steady, theee-dimensional flow over a hypersonic slender body. On the other
hand, Gqs. (4.132) (4.135) govern an unsteady, two-dimensional flow. However,
since the scets of equations for these two cases are identical, there obviously is an
cquivalence between these two types of flow. This is the mathematical justifica-
tion for the hypersonic equivalence principle, which can be traced back to Hayes
in Ref. 29. Simply stated, we have:

The hypersonic equivalence principle :
The steady hypersonic flow over a slender body is equivalent to
an unsteady flow in one less space dimension.

Furthermore, examining these two sets of equations further, note that the sym-
bols ¥ in Eqgs. (4.41)-(4.45) and [ n Eqs. (4.132)--(4.135) are equivalent, 1.¢,
X tV,
f=g=r= (4.136)

Thus. from Egs. (4.136), we have

x=V,1 (4.137)

Fquation (+.137) is uscful in the physical interpretation of the hypersonic equiv-
alence principle, to be discussed next.

The above cquivalence was established mathematically. It can be cstab-
tished on a phusical basis, as well. To see this, consider the sketch shown in
Fig. 4.10. Visualize a fixed (y-2) plane perpendicular {o the page, as illustrated by
the heavy vertical lines at the left. A hypersonic body moving at velocity V,,
penetrates this plane. (In IFig. 4.10, the body is shown as a body of revolution
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| s

x, =V, 1,

FIGURE 4.10
Hlustration of the hypersonic equivalence principle; three-dimensional steady flow and an equivalent
two-dimensional unsteady {low.

but, in general, the body can have an arbitrary cross section.) The trace of the
body and its shock wave on the y-z plane at three separate times is shown at the
right of Fig. 4.10. In the r-z plane, the changing body shape looks tike an ex-
panding cylindrical piston moving at velocity w,, driving a cylindrical shock
outward at vclocity w,. Due to the hypersonic cquivalence principle, the un-
steady flow in the y-z plane at the right of Fig 4.10 shown at various times
t=1,, 1>, ctc. gives the corresponding steady flow results in the y-z planes
located at various corresponding values of x = x|, x,. etc.,, shown at the left,
where x = V/, t. Therefore. we sec how the stecady hypersonic flow over a body
(the left-hand side of Fig. 4.10) can be constructed from an unsteady flow in one
less space dimension (the right-hand side of Fig. 4.10).
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Question:  What is the practical advantage of this equivatence? The
answer Hes in the fact that solutions of the unsteady one-dimensional flow
driven by a moving flat-faced piston, and the unsteady two-dimensional flow
driven by a radially expanding circular piston (the case shown at the right in
Fig. 4.10) exist in the classical literature. An excellent source for these classical
solutions is the book by Sedov (Ref. 35). These solutions are carried out by sclf-
similar methods, wherein Eqs. (4.132)-(4.135) arc reduced to a simpler set of
ordinary differential equations. We will not go into the lengthy details here; sec
Ref. 35 for a discussion of these self-similar solutions. The important point here
is that a solution to the unsteady flow shown at the right of Fig. 4.10 does
indeed cxist in the literature, and due to the hypersonic equivalence principle,
this solution can be carried over directly to the hypersonic steady flow shown at
the left of Fig. 4,10. Morcover, solutions to the classical unsteady flow problem
existed before the advent of major interest in hypersonic aerodynamics in the
1950s, and therefore were waiting there, in the literature, to be of help to hyper-
sonic acrodynamicists when the time came.

To further illustrate the hypersonic cquivalence principle, consider a
stmpler case, ¢.g., the flow over a two-dimensional airfoil with chord length ¢, as
shown at the left of Fig. 4.11 (obtained from Ref. 8). As the airfoil penetrates the
fixed vertical plane (fixed vertical slit), the body motion acts like a one-dimen-
sional piston moving in the z direction. This piston motion is shown in the =-¢
wave diagram at the right of Fig. 4.11. Note that, as the airfoil passes through
the vertical plane, the equivalent piston motion is first toward increasing z,
reaching a maximum z (corresponding to the maximum airfoil thickness), and
then retreating toward decreasing z. The resulting unsteady shock and Mach

Fixed vertical slit

- Mach lines T"'

Shock wave —
—Mach
T ___>Shock waves
V,>a, < wave ¢
t=
| 2
Shock wave 7 ———Shock
’ waves
| ¢ |
Fquivalent
piston motion

FIGURE 4.11

Nlustration of the hypersonic equivalence principle; two-dimensional steady flow and an equivalent
one-dimensional unsteady flow, (Ref. 8.)
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waves are shown in the z-r wave diagram on the right of Fig. 4.11. These waves
are directly equivalent to the steady shock and Mach waves over the airfoil, on
the lefl side of Fig. 4.11, where again x = V_r. As before, the known, classical
solution of the unsteady one-dimensional flow shown on the right can be carried
over directly to construct the steady two-dimensional flow on the left. Note that,
if the airfoil shape is given by
2= Zn\:\x,/(’\)
¢

then the equivalent piston motion is

[t
- = Zmux‘/ (g)

where 1 is measured from the instant the leading edge of the airfoil contacts the
vertical plane, and 1, is the duration of piston motion, t, = ¢/V,,. Also, in the
steady flow picture shown at the left, let w, be the value of the vertical compo-
nent of the flow velocity on the body surface where the slope of the body is
dz/dx:

=

dz
Wy = Vo o= (4.138)
dx
Through the equivalence principle, this is exactly the same as the flow velocity
in the z-direction adjacent to the face of the piston in the unsteady flow picture
w, where

dz
dt
Since x = V_t we have from Eqgs. (4.138) and (4.139),

dz V., dz
RN T

w p=

(4.139)

which is consistent with the equivalence principle, namely, the piston velocity is
the same as the vertical velocity of the body surface as seen from the fixed
vertical plane penetrated by the body. If we divide Eq. (4.138) by the free-strcam
speed of sound. a . we obtain

V, [dz
o Yo <L) = M., tan 0 (4.140)
a, a,\dx

where ¢ is the local inclination angle of the surface. For small ¢, tan 0 = 0.
Moreover, the order of 0,, is on the order of z_,/c. From Eq.(4.140), we

obtain
(“J> = <.‘ Y’?) = MO = O<Mw 51"%‘) (4.141)
a:ﬂ max ”oo max ¢
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we consider =, /c as a measure of the slenderness ratio of the airfoil, that is
«/¢ =1 then, from Eq. (4.141),

(""’) - ('V"> = O[K] (4.142)
‘l L max ‘ltl) max

wre K =M, 1 is the familiar hypersonic similarity parameter. Equation
142) indicates two points:

The conditions for the hypersonic equivalence principle are the same as those
for hypersonic similarity, which makes absolute sense considering that the
hypersonic small-disturbance equations are the basis for both lines of
thought.

The hypersonic similarity parameter K can be given some physical signifi-
cance on its own. namely, that it is on the same order as the maximum-
disturbance Mach number in the shock layer. (This has already been demon-
strated for all practical purposes in our previous discussions involving K; the
present development is simply a reinforcement.)

An important variation on the hypersonic equivalence principle is the ap-
ication of blast wave theory, Returning to the right side of Fig. 4.10, note that
ie unsteady shock-wave motion and ensuing flowfield are driven mechanically
v an expanding piston. A similar unstcady flow can also be driven by the
stantaneous release of energy at the origin, as sketched on the right of
ig. 4.12. Here, at time ¢ = 0, a large amount of energy is released at a point in
e y-z plane. A strong cylindrical shock wave propagates from the point of
wergy release. It can be argued that the unsteady two-dimensional flow shown

the right of Iig. 4.12 is equivalent to the steady three-dimensionat flow over a
unt-nosed stender body. where the blunt nose, in “blasting through™ the fixed
crtical plane, provides the equivalent “instantaneous™ encrgy release shown on
w right. Results obtained from this equivalency are called blast wate resulrs.
uch results have been used to estimate the pressure distribution on axisyminet-
¢ blunt-nosed cylinders at hypersonic speeds, with the cylindrical axis aligned
1 the direction of the flow as sketched on the left in Fig. 4.12. Blast wave results
ave also been used to estimate the pressure distribution on two-dimensional
labs with blunt leading edges in hypersonic flow; such a body is sketched on
ae left of Fig. 4.13. Here, the blunt nose, in blasting through the vertical v-z
lane, represents a concentrated line of cnergy release, which drives planar
hock waves in both the upward and downward directions, as sketched on the
ight of Fig. 4.13. The shock waves shown on the right of both Figs. 4.12 and
A3 are called blast wares since they are created in both cases by the instanta-
ieous refease of targe amounts of energy, as would be the case of a concentrated
xplosion, or blast. In these applications, the blast wave results provide pressure
listributions on the flat surface downstream of the blunt nose as well as shock-
vave shapes in the same region; the pressure distribution and flowficld in the
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Blunt-nosed cylinder Cylindrical blast wave

Blast
at origin

Shock wave
propagating
from center
of blast

t=1,

FIGURE 4.12
Blast wave anajogy for & blunt-nosed cylinder.

nose region ftself ts quite another problem, and are not provided by blast wave
theory. {The detailed blunt-body flowfield is discussed in Chap. 5.)

In the blast-wave analogy, the cnergy that is released (the right side of
Figs. 4.12 and 4.13) is related to the wave drag of the nose, as follows. Consider
the blunt-nosed flat plate shown in Fig. 4.14. Let D be the wave drag of the nose
per umit span. The plate moves through a slab of air which has thickness dx in
the direction of flight, and has unit length in the spanwise direction. Drag is the
force exerted on the bodyv by the air; in turn, due to Newton’s third law, the
body exerts a force on the air in the equal and opposite direction, namely, D.
Hence, the body does work on the air equal to D dx. Since work is energy, then
the amount of energy per unit span deposited in the air is dF, where

dE =D dx (4.143)

If we let the body move a unit distance in the x-direction, then {rom Eq. (4.143)
the energy released to the air is

c=D(1) =D (4.143a)

From Eq. (4.143), we sce that the nose drag is equal to E. In turn, from Fig. 4.14
considering a unit span and a unit length in the x direction, we sec that E is the



Blunt-nosed slab Planar blast wave
| I

Line of
energy
release

T Shock wave

Line of energy release

FIGURE 4.13
Blast wave analogy for a blunt-nosed slab,

CNea]

D dx = dE where D = nose drag per
unit span of
body

Energy per unit area:

dE

=D
dx

FIGURE 4.14
Equivalence between nose drag and blast wave energy; blunt-nosed slab.
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energy rcleased over a horizontal plane of unit area; that is, E is the energy
releasc per unit arca. In the onec-dimensional unsteady blast wave problem
sketched on the right of Fig. 4.13, we visualize that the line of energy releasc
shown is in reality an infinite sheet of energy release, where the shect is perpen-
dicular to the page. In turn, the blast waves in this picture are planar waves
perpendicular to the page, of infinite extent, and propagating both upward and
downward, Hence, in this picture, from Eq. (4.143), E represents the energy re-
feased per unit arca of this sheet, and in turn E = D, where D is the nose drag of
the body per unit span. For the case of the blunt-nosed cylinder shown in
Fig. 4.12, the nose drag and the energy release are also related, as follows. Con-
sider the axisymmetric cylinder moving in the x direction, as shown in Fig, 4.15.
The body moves through a cylindrical slab of air of thickness dx. From the
same argument as above, the nose drag D of the body adds energy to this cylin-
drical slab, equal to

dE = Ddx

Thus, when the body moves a unit length in the x direction, the cnergy released
to the air is

E=D(1)=D (4.143b)

So once again we see that the cnergy release is equal to the nose drag; however,
here E represents the energy release per unit length along the x axis (in contrast
to the cnergy release per unit area in the case of the twb-dimensional slab).
Returning to the blunt-nosed cylinder shown in Fig. 4.12, we visualize that the
blast at the origin shown at the right is in reality a blast concentrated along an
infinite line perpendicular to the page, and that E is the energy release per unit
length along this line. The shock wave gencrated by this energy release is a
cylindrical blast wave. propagating outward in the radial direction, and extend-
ing to an infinite extent perpendicular to the page. From the above arguments,

FIGURE 4.15
Sketch for the blunt-nosed cylinder.
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we have shown that the nose drag D is equal to the energy release per unit
length L.

Return to Figs. 4.12 and 4.13. The advantage of the blast wave analogy is
that solutions to the unsteady blast wave problem (the right sides of Figs. 4.12
and 4.13) can be found in the classical literaturc, and hence can be immediately
transferred (o the steady hypersonic flows shown at the left of Figs. 4.12 and
4.13. As in our previous discussion invelving the unsteady piston problem. such
blast wave solutions can be obtained from self-similar solutions involving ordin-
ary differential equations. A detailed presentation of these solutions is given in
Chap. 4 of Sedov (Ref 35), which the reader is encouraged to examine. In
Ref. 35, treatments arce given for spherical, cylindrical, and planer blast waves;
only the latter two arc germain to Figs. 4.12 and 4.13 respectivety. It is beyond
the scope of the present book to go into the lengthy details of these unsteady
blast wave solutions. However, in the case of very intense explosions, where the
pressure ahead of the blast wave can be neglected in comparison with the pres-
sure behind the wave, analytic, asymptotic formulas for velocity, density, and
pressure near the center of the explosion can be obtained. Of most interest to us
is the pressure, given in Ref. 35 for the cylindrical blast wave (Fig. 4.12) as

E 1/2
p:k1pm< > it (4.1440)
Py
wliere

y[Z(vv V2=l
ko=@ (4. 144b)

and for the planer blast wave (Fig. 4.13) as

E\2/3
p= Ap() 2 (41450
P

R

where

27300, — 1 [(5y—4)3(2-]
ky = 9"(&':& '1')”)0‘ T EE T (4.145h)
LEquations (4.144a) and (4.145¢) give the pressure near the center of the blast as
a function of time 7, with the cnergy release E as a parameter. In addition. let
the coordinate of the shock wave be denoted by r; for the cylindrical blast wave.
r 18 the radial coordinate of the wave, whereas for the planer blast wave, r is the
vertical coordinate of the wave. From Ref 35, we find that, for the cylindrical

blast wave,
r I/
1~=< > ' (4.146)
[
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r /3
r= ( > £33 (4.147)
P

Therefore. we can look upon Eqs. (4.144)-(4.147) as solutions to the {lows
shown at the right of Figs. 4.12 and 4.13. Let us now obtain the equivalent
results for the steady hypersonic flows shown on the left of Figs. 4.12 and 4.13.

First. consider the cylindrical case shown in Fig. 4.12. In Eq. (4.1440), E is
the energy release per unit length along the axis of the cylindrical shock wave;
as shown by Eq. (4.143h), E = D. Since D is the nose drag, let us define a nose-
drag cocflicient €, as Cp = D/y,_ S, where g, = 1p, V2 and S = nd*/4. Here,
P, and V, arc the free-stream density and velocity, respectively, for the body
shown at the left of Fig. 4.12, and d is the base diameter of the body. Thus, from
Eq. (4.143h). we have

and for the plener blast ware

1 I
E=D= 2/’1 Vi)c[)l

i (4.148)

Also, from the equivalence principle as embodied in Eq. (4.137), we have

= (4.149)

0

Substituting Eqgs. (4.148) and (4.149) into (4.1444), we obtain

-
p=lp., f; Vod/Cp=2

o
X

Recalling the perfect gas cquation of state, namely, p,, = pRT,, the above
equation can be written as

- -1
e [T X
=k [ VIJ/Chl -
P ).RT,JO\/g m\/D<d>

Recognizing YRT, = u?, where «,, is the free-stream speed of sound, and noting
that V, /a, = M, the above cquation becomes, for = 1.4

. N\ — 1
Io_os13 kM2 /C (;) (4.150)
P I

o*

From Eq. (4.144b), for y = 1.4, k = 0.07768. Thus, Eq. (4.150) becomes:

c
Blunt cylinder P = 00681M2, V/Co @.151)
Po (x/d)
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iserting Eqs. (4.148) and (4.149) into (4.146), we have

ad2 M4 x \ 12
- V-C il -

T
o\ 14 -
- cys 1*
. (8> D \/;
r
] viinder Y T Nal 52
Yt eylinder =0.792 C/* |- (4.152)
d d

v\gain examining the left side of Fig. (4.12), we note that the pressure distribu-
ion downstream of the nosc of the blunt-nosed cylinder is given by Eq. (4.151)
s a function of x. Moreover, the shape of the shock wave is given by Eq. (4.152)
s a function of x. FEquations (4.151) and (4.152) are blast wave results, applied
o the steady flow over the blunt-nosed cylinder via the hypersonic equivalence
srineiple.

Next, consider the planer case shown in Fig. 4.13, In Eq. (4. 14511) E is the
;wgwkmwm’wwmmmw imcsperpendicular 1o the.pagesas shewarsy.
g4 14?0) } = D. For the biunt nosed stab shown on the left of Fig. 4.13, let
15 define a nose-drag coefficiént as C,=D/q,S where, as before g, =ip. V3,
wut now S =d(1)=d, namely, the basc area per unit span. Thus, from
iq. (4.1430),

E=D=\ip V2dC, (4.153)

Juilizing Egs. (4.153) and (4.149) along with Egs. (4.145a), (4.145h) and (4.147)
we obtain, for y = 1.4 (the details are left as a homework problem),

—2/3
Blunt slath P oM C’”(j) (4.154)
{

o

and

3
Blunt slab i — 0. 794C”3< j) (4.155)
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Examining the above results further, we note that, for the blunt-nosed cylinder:

1. From Eq. (4.151), the pressure distribution varies inversely with x.

2. From Eq. (4.152). the shock wave shape varies as x'/?, that is, it is a parabolic
shape.

Also, for the blunt-nosed slab, we note that:

1. From Eq. {4.154), the pressure distribution varies inversely as x?/3,
2. From Eq. (4.155), the shock wave shape varics as x2/3.

Also observe that p/p . for both cases varies with the square of the free-stream
Mach number, and that all the results depend on Cj, to some power. Recall
again that C,, is the nose-drag coeflicient. We can estimate the values of €,
from newtonian theory as given in Sec. 3.2. Specifically, as noted in Sec. 3.2 for a
hemicylindrical nose (the blunt slab case), Cp, = 3, and for a hemispherical nose
(the blunt-nosed cylinder case), C,, = 1. Also, recall again that the above blast
wave results are to be applied downstream of the nose of the body. although x
in the above equations is measured from the tip of the body. Blast wave theory
cannot be applicd to obtain detailed resuits on the nose itself; this region must
be analyzed by detailed numerical solutions, such as to be discussed in Chap. 5.
Question:  How accurate is blast wave theory as applied to hypersonic
bodies? Onc of the most definitive answers to this is given by Lukasiewicz
(Ref. 36). Utilizing the blast wave results of Sakuri (Refs. 37 and 38), Lukasie-
wicz compared thedry with wind-tunnel data for blunt-nosed flat plates dnd
Eﬁﬁiﬁicrs =i _""(R 4. 37 and®3g) ?& va&bla»st wave results, 1dent'
Qi,as ﬁkﬁ%ﬁ s;%cqnd appro,,;;n‘,it; R : pgrpmmqhon whxc'}],uzno
the free- stream pressure ahead of the blast wave, gives the results deseribed by
Egs. (4.151). (4.152), (4.154), and (4.155). The second approximation takes into
account a finite pressure ahead of the blast wave. These results, as applied by
Lukasiewicz (Ref. 36), are listed below; note that the first approximation results
are the same as obtained earlier, with only negligible differences in the leading
coeflicients. From Refl 36, we have:
Blunt-nosed flat plate (first approximation)

2/3

P _onim? C» (4.156)
Pa "\x/d
2/3

5 - 0.774c;)/~‘<'§> (4.157)

Blunt-nosed flat plate (second approximation)

c, 2/3
o =0.121M2 (/}) + 0.56 (4.158)

"Nz ooy = 0.774
<;i>(MwCD) B JVIi[C'D/(x/(])]z/3 —1.09 (4.159)
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Blunt-nosed cylinder (first approximation)

P _o067Mm2, V/Co (4.160)
P (x/d)

r x\'/?

= 0_795c;,/“<5> (4.161)

Blunt-nosed cylinder (second approximation)

c
P =0.067M;*/ 21044 (4.162)
P (x/d)
R/d </ [ (D
e 0795 | 3y 4.163
M, CL? 07 micy | TP arcp (3163

where x = distance measured from the nose, in the flow direction
Cp, = wave drag coeflicient of the nose
d = plate thickness or cylinder diameter
r = value ol z at the shock wave

Lukasiewicz (Refl 36) compared the above equations [Eqgs. (4.156)- (4.163)]
with experimental data obtained at the Arnold Enginecring Development Center
(AEDC), and with more exact theoretical results based on the method of charac-
teristics. Some of his comparisons are shown in Figs. 4.16-4.23. In Fig. 4.16,
results are given for the pressure distribution over a flat plate with a cylindrical
leading edge. Note that the first approximation, Eq. (4.156), compares more
favorably with the wind tunnel data than the second approximation, Eq.
(4.158). However, as shown by the solid curve in Fig. 4.16, the second approxi-
mation can be brought into close agreement with the data if the origin of the x
axis, namely the point at which x = 0, is taken not at the nose of the body, but
rather at a location 3d upstream of the nose. In Fig 4.17, the data in Fig, 4.16
are plotted versus the “blast analogy parameter” (x/d)**/MZ2C%?, along with
additional results obtained from the method of characteristics as described in
Refs. 39 and 40. Also shown as the dashed line is a simple correlation of the
method of characteristic results from Refs. 39 and 40, given as

p o\ 23
Lo=o0n17m2 c,z,/i*(w[) +0.732 (4.164)
¢

P

For the theoretical results shown in Fig. 4.17, the origin is again shifted by the
amount Ax = 3d; with this shift, the second approximation [Eq. (4.158)] is seen
to pive good agreement with both wind tunnel data and the method of charac-
teristics. Morcover, the results in Fig, 4.17 clearly show that the trends which are



HYPERSONIC INVISCID FLOWFIELDS- APPROXIMATE METHODS 131

© VKF-AEDC, flat plate with

10 { hemicylindrical leading edge
\ Re, = 0.17 x 10, air . s
\ _ 208 experimental data
g \ Cp = 1.27 from nose-pressure distribution

Cp = 1.22 modified Newtonian
——— lst approximation, Eq. (4.156)
o \\ —-— Ax/d =0 | 2d approximation, Eq. (4.158) % theory
Axfd =2/3( Cp =127, M = 8.08

=3

Q
e
/

r
P
4
2
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x/d
FIGURE 4.16

Pressure distribution on a blunt-nosed flat plate. (From Likasiewicz, Ref. 36.)

100 M, Cy x/d range
N 2 -
E 20 .4 1.3-1000 Bertram and Baradell,
C © 93 14 145114 method of characteristics
s] 6.86 1.374 2-170 ’
o 808 127 2-9 VKF-AEDC, | experimental
= Re, = 170,000{ data
10 e
p - 2d approximation
Pe - Eq (4.158)
Eq. (4.164)
1 Ist approximation,
Eq. (4.156)
0.5 I R R T A TR BTN W I TR N S |
0.001 0.01 0.1 1
(x/dy*?
M3 CH?

FIGURE 4.17
Correlation of pressure distribution for a blunt-nosed flat plate. (From Ref. 36.)
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Bertram and Baradell, Ref 40,
flat plaie with a sonic wedge (43¢ half

16~ angle) leading edge; characteristic
solution, y= 114, €4.="1.374,'M , = 6.86 -
—-— 24 approximation,
Eq. (4.159) Cp= 1374
12F— — — 1st approximation, M, =686
-~
Eq. (4.157) T

0 [ | 1 | 1 | 1 I
0 10 20 30 40

x/d

IGURE 4.18
1ck-wave shape calculated by the method of characteristics, and by blast wave theory; blunt-
ssed flat plate. (From Ref. 36.)

redicted by blast wave theory arc confirmed by experiment, namely that:

For a blunt-nosed flat plate, the pressure distribution p/p,,, varies
(1) dircctly as M2,
(2) directly as C3?
(3) inversely as (x/d)*"

csults Tor shock-wave shapes are shown in Vig. 4.18, where blast wave theory is
s>mparcd with the exact method of characteristics, from Ref. 40. Clearly, the
st appm‘(lmdnon, Lq. (4. !47)gwcs poorer agreement than the second appro i
1ation, [q.(4:159), and ncither of the blast-wave results is parlnculdrly good.

lowever, Eq. (4.159) appears to predict the proper shape, but it is simply shifted
‘om the exact results. If the results for both the first and second approximations
re shifted upward by the amount Ar = d, much better agreement is obtained, as
1own in Fig. 4.19. Here, comparison is also made with the shock tunnel data of
‘heng et al. (Ref. 41). The results of Fig. 4.19 tend to confirm that:

For a blunt-nosed flar plate, the shock wave shape varies
(1) directly as C)*
(2) directly as (x/d)*?
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: 2d approximation,
- Eg. (4.159) //
N s / .
L
x/d = 400 7
+ 3s
1st approximation,
0.1 Eq. (4.157)
rid }:
M2C,
0.01-
C —Arld M
L
1.374 1 6.86 Beriram and Baradell (y = 1.4),
Ref. 40.
2 1 12.3  Cheng et al. (shock tunnel),
Ref. 41.
0.001 L poo oy ol g 1l
0.001 0.01 0.1 1
(x/dy*?
MOy

FIGURE 4.19
Correlation of shock-wave shapes; blunt-nosed flat plate. (From Ref. 36.)

Results for the pressure distribution over a hemisphere cylinder are shown
in Fig. 4.20. The first and sccond approximation blast wave results are obtained
from Eqs. (4.160) and (4.162) respectively. Note that the best agreement with
wind tunnel data at Mach 8 is obtained with the second approximation, with
the origin shifted upstream of the nose by Ax = 1d. Other data for higher M,
from Rel 42 are plotted in Fig. 421 versus the “blast analogy parameter”
(x/d)/(MZ CL?). Here, the origin is shifted by Ax = d. Once again we sce the
general confirmation of the trends cstablished in blast wave theory, namely that:”

For a hlunt-nosed eylinder, the prc@sﬁrc distributiog‘ p/p. varies
(1) directly as M2
(2) directly as CL”*
(3) inversely as (x/d)

The shock wave shape for a hemisphere cylinder is given in Fig. 4.22; the blast
wave results arc compared with experimental data from Lees and Kubota
(Ref. 43). Once again we sec that the shock-wave location predicted by blast
wave theory is not accurate. However, if the predicted shock wave is shifted by
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o VKF-AEDC, hemisphere-cylinder, air,

5 Re,. 4 = 1.34 x 108, M_ = 8.08 imental
\ Cp = 0.89 from pressure distribution Z);?;mmen a
| Cp = 0.914 modified Newtonian (y = {.4)
4 \\\ ——— Ist approximation, Eq. (4.160)
© \\\ —-— Ax/d =0 2d approximation, Eq. (4.162) theory
o \ Ax/d =1/2{ C, =089, M, =808
LA O\
D
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Th. | |
1 7
FIGURE 420
Pressure distributions on a hemisphere cylinder. (From Ref. 36.)
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FIGURE 421

Correlation of pressure distributions for a blunt-nosed cylinder. (From Ref. 36.)
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FIGURE 422
Shoch-wave shape around a blunt-nosed cylinder. (From Ref. 36.)

an amount Ar, as indicated in Fig 4.23, then good agreement is obtained. More-
over, Fig. 423 demonstrates that blast wave theory predicts properly the follow-
ing (noting that the slope of the curve on the logarithmic plot is 1/2):

For the bluni-nosed cylinder, the shock wave shape varies
(1) directly as Cp*
(2) directly as (x/d)'/?

A comment is in order here. The analogy between unsteady blast wave
flowfields and the steady hypersonic flowfields over slender, blunt-nosed bodies
is somewhat tenuous on physical grounds, mainly because of the assumption in
the classical blast wave solutions of instantaneous energy release at a point or
line i space. A hypersonic body does not add energy to the flow instanta-
neously, nor 1s this energy addition precisely at a point or along a line. This is
why better agreement 1s obtained in some of the previous plots by shifting the
virtual origin of x. However, there is good physical reasoning behind the anal-
ogy between the steady flow over a hypersonic slender body and the unsteady
flow in one less space dimension (the hypersonic equivalence principle) because
in the steady flowfield, the disturbance velocities v’ and w' perpendicular to the
body axis are truly much larger than the disturbance velocity in the {low direc-
tion, u'. [Review, for cxample, Eqs. (4.34) and (4.35).] In the final analysis, for
whatever reason. blast wave theory does provide some relatively accurate pre-
dictions of the pressure distributions and shock-wave shapes on blunt-nosed
slender bodies where the Reynolds number is high enough such that viscous
interaction cffects are negligible. Moreover, these blast wave results are in the
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x/d
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FIGURE 423
Correlation of shock-wave shapes for a blunt-nosed cvlinder. (From Ref. 36

Jorm of analytic formulas which are extremely handy for quick, approximate esti-
mates -an advantage not to be ignored.

As a final note, the above results from blast wave theory can readily be
expressed in terms of the pressure coeflicient C .

- 2
o g L (4.165)
o Ve M A\ p,
At veny high vatues of M, . p/p, » 1, hence Tig. (4.165) can be approximated by
al
c= ~.(°F (4.166)
TOaMILAP,
Combining Fq. (4.166) with Egs. (4.156) and (4.160), we have, for 7 = 1.4,
0.173C%3
Blunt-nosed plate C,= ,',)‘ 1.167
{(x/dy™
0.096CL?
Blunt-nosed cylinder = L (4.168)

P (/)
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Note that C, is independent of M ; blast wave theory is another example of
Mach number independence at hypersonic speeds.

In Refl 3. a combination of blast wave theory and straight newtonian was
used to predict the pressure distribution along the windward centerline of the
space shuttle. Let | denote the length of the shuttle, and d the thickness of the
fusetage near the canopy. For the shuttle, the fineness ratio is [/d = 7. Moreover,
the drag cocflicient of a hemisphere from straight newtonian theory is €, = 1.
Substituting these vahues into Eq. (4.168), written as

/XN
¢, amecie(3) ()

we obtain

0.0137
c =222 4.169
B i ( )

Equation (4.169) holds for zero degrees angle of attack. To take angle of attack,
a into cffect. let us simply add the newtonian contribution 2 sin® & to Eq. (4.169),
obtaining

00137

r ,\'//[

C +2sin’a “.170)

Let us choose a point on the shuttle trajectory corresponding to a = 40° and
M_ =216 For x =40° Eq.(4.170) becomes

n= 00137 826 A4.171)
x/!
Results from Eq. (4.171) are plotted as the solid curve in Fig. 4.24, obtained
from Ref. 3. These results are compared with actual flight data from the STS-3
(open circles) and STS-5 (solid circles) shuttle missions; these flight data are
obtained from Rel. 44, The agrcement between theory and flight data in Fig. 4.24
is quite remarkable. especially when considering that the theoretical curve can
be catculited in a few minutes by hand. This clearly demonstrates the value of
both blast wave theory and newtonian results.

This ends our discussion of bluast wave theory, and the general idea of the
hypersonic equivalence principle. Our purpose has been to describe these ideas,
to make them plausible on a physical and mathematical basis, and to show
some practical results. Keep in mind that all these results are limited to slender
“bodies dt hypersohic speeds. In “the next section, we will discuss a class of
approximate inviscid flow theory- Which ‘can bé applied to blunt as well as to
slender bodies.
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/fF,q‘ (4.171)
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FIGURE 4.24
Comparison of pressure  coeflicients  obtained with combined blast wave/newtonian theory
[T (41701 with fight data for the space shuttle, Windward centerline, M, = 21.6, o = 407,

4.9 THIN SHOCK-LLAYER THEORY

We have already discussed that shock tayers over hypersonic bodies are thin
(refer aguain to Fig. 1.13, and the related discussion in Chap. 1). In the limit as
M, — o and y > I, we have shown that - 0, and the shock layer becomes
infinitely thin and infinitely dense. In such a limit, we can consider the shock
shape, the body shape, and the streamline shapes in between, to be all the same.
Such approximations, or variations of them, are the basis of thin shock-layer
theory. An interesting discussion of thin shock-layer theory can be found in
Ref. 45; additional discussion is given in Ref. 46.

In this section, the analysis developed by Maslen (Ref. 47) will be outlined
as an cxample of a theory based on the assumption of a thin shock layer.
Maslen’s method is chosen here because of its simplicity, and because of its
frequent application—even today—for the approximate analysis of hypersonic
inviscid shoek layers. Morcover, Maslen’s method gives results for the flowfietd
over blunt as well as slender bodices, and therefore it makes a nice intellectual as
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well as chronological bridge between the previously discussed classical material
in this chapter. and the more modern. computationally based blunt body solu-
tions to be discussed in Chap. 5.

Consider the curvilinear coordinate system shown in Fig. 4.25, where x
and y. respectively, are parallel and perpendicular to the shock, and v and r arc
the corresponding components of velocity. For simplicity we will assume a two-
dimensional Now; however, Maslen’s method also applies to axisymmetric {low.
(See Ref. 47 for details.) Now assume that the shock layer is thin, and hence the
streamiines are essentially parallel to thc shock wave. In a streamiine-bascd
coordinate system, the momentum equation normal to a strcamline is
u>  dp

p-—=

4172
R on (4.172)

where R is the local streamline radius of curvature. For the above assumptious,
Eq. (4.172) becomes

R'S = ’0’}; (4.173)

FIGURE 4.25
Shock layer model for thin shock layer analysis by Maslen,
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where R, is the shock radius of curvature. Define a stream function ¢ such that

{
pu = (fl/j (4.174)
dy
and replace y in Eq. (4.173) with  [ie., introduce a von Mises transformation
such that the independent variables are (x, ) rather than (x, »)].

u?  ap
) =
PRy (pu)

or

dp  u
L 4.1175
N R, ( )

Again, consistent with a thin shock layer where all the streamlines are essentially
parallel to the shock, ¢ =u, the velocity just behind the shock. Thus,
. (4.175) becomes

op g

Dl 4.176
oy R, ( )

Integrating Eq. (4.176) between a point in the shock layer where the value of the
stream function is 4 and just behind the shock wave where y =\, we have

P ) = ) + ;((;)) [ — ()] (4.177)

Eq. (4.177) is the crux of Maslen’s method. The flowficld solution progresses as
follows.

1. Assume a shock-wave shape, as shown in Fig. 4.26. In this sense, Maslen’s
method is an inverse method, where a shock wave is assumed, and the body
which supports this shock is calculated.

2. Henee, all flow quantities are known at point 1 (Fig. 4.26) just behind the
shock, from the oblique shock relations. The value of ¢ =y at point I is
known from

Yy =pL.Voh

3. Choose a value of 15, where 0 <), <. This identifies a point 2 inside
the fNowlield along the y axis, as shown in Fip. 4.26, where = ,. (The
precise value of the physical coordinate y, will be found in a subsequent
step.)
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FIGURE 4.26
Details for the analysis by Maslen.

4. Calculate the pressure at point 2 from Eq. (4.177)

Uy
pa=0p1+ O — )
(R')‘)

5. The entropy at point 2. s,, is known, because the streamline at point 2,
corresponding to ¥ = ,, has come through that point on the shock wave,
point 2', where ¥,. = 1/,, and where

lr/IZ’ = lr//2 =P Voohl

or
hy= 42 (4.178)

Thercfore, h,, is obtained from Eq.(4.178) which locates point 2° on the
shock. In turn, s, is known from the oblique shock relations, and since the
flow is isentropic along any given streamhine, s, = s,..

6. Calculate the enthalpy I, and density p, from the thermodynamic equations
of state

hy = h(s;. p)
P2 = p(S2, P2)
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7.

10.
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Caleulate the velocity at point 2 from the adiabatic energy equation (total
enthalpy is constant). That is,

v2
hog=hy +-==
to 1o 2

where hy, is the total enthalpy, which is constant throughout the adiabatic
flowfield. In turn,
2
u3 . .
hg =h, + 3 (ignoring v,)

or
uy = /2hy — hy)
1l the flow quantitics are now known at point 2. Referring to Figs. 425 and

4.26, repeat the above steps for all points along the y axis between the shock
(point 1) and the body (point 3). The body surface is defined by ¥ = 0.

. The physical coordinate y which corresponds to a particular value of ¢ can

now be found by intcgrating the definition of the stream function (which is
reafly the continuity cquation). Since

dy
<= pu
dy !
Then
[N ]
¥ :J W (4.179)
v pu

where p and 1 arc known as a function of i from the previous 5tcps This
also locates the body coordinate, where

"y
Yo =
o P
This procedure is repeated for any desired number of points along the speci-

fied shock wave, hence generating the flowfield and body shape which sup-
ports that shock.

Again, remember that the above steps assumed a two-dimensional flow. Exten-
sion to an axisymmetric body is straightforward (see Ref. 47).

Some results calculated by Maslen, taken from Ref. 47, arc shown in Figs.

4.27-4.29. In Fig. 4.27, a paraboloidal shock is assumed, and the calculated body
shape is shown. (Notc that Maslen’s method is an inverse method, where the
shock wave shape is assumed, and the body shape that supports the assumed
shock, us well as the flowficld between the shock and body, are calculated.)
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Maslen {Ref. 47)
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FIGURE 4.27
Body associated with paraboloidal shock wave: from Maslen (Ref. 47). M, = o0, y = [ 4.

Maslen’s calculations of the body shape are shown as the triangles, and arc
compared with more exact calculations. For example, the left side of Fig 4.27
shows results in the nosc region, which are compared with the exact numerical
calculations by Van Dyke (Ref. 13). Excellent agreement is achieved. On the
right side of Fig. 4.27, results extending far downstrecam of the nose arc shown.
Here, Maslen’s results are compared with the theories of Yakura (Ref 48) and
Sychev (Ref. 49), bascd on hypersonic small-disturbance thcory and blast wave
analysis. The corresponding surface pressure distributions (in terms of p/pg,
where p, is the stagnation point pressure) are shown in Fig. 4.28. Note that only
a few points representing Maslen’s results are shown. There is good reason for
this; all the results given by Maslen in Ref. 47 were calculated by him over the
space of a few days using a hand calcularor, which naturally limited the number
of calculated points. (However, this iltustrates the practicality of Maslen’s meth-
od, namely, that it is indeed simple enough to be carried out using a hand
calculator.)

0.034
» Present 0.030 & Present method
10 method -
o = 0.026 Yakura (Ref. 48)
0y =Y
= 08 L _ Van Dyke o 0.022
g o6 A Z 0018
2 5
ﬁ 0.4 a L& 0.014
= & -
& 02 a 0010
0 0.006
0 020406081012 0 5 10 15 20 25

FIGURE 4.28
Surface pressure on body supporling a paraboloidal shock; from Maslen (Ref. 47). M, = o,
y=14
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Present method
— — — — Inouye and Lomax (Ref. §1)
(e} Kubota (Ref. 50)

i

FIGURE 4.29
shock wave shape and surface pressure for a hemisphere cylinder; from Maslen (Ref. 47). M, = o,
- 14

The inverse method can be used, in an iterative sense, to calculate the flow
aver a given body, ie., the shock is assumed, and the supporting body shape is
calculated. This body shape is compared with the given body, and a new shock
is assumed that will produce results closer to the given body. This iteration is
repeated until the calculated body matches the given body closely enough. Using
this approach, Maslen calculated the pressure distribution and shock shape for a
hemisphere cylinder, shown in Fig. 4.29. Good agreement is obtained with the
experimental data of Kubota (Ref. 50). Also shown arc the numerical results of
Inouye and Lomax (Ref. 51), based on an inverse blunt-body solution (iterated),
and the method of characteristics. Again, Maslen’s method gives reasonablc
results. Therefore, in light of Figs. 4.27-4.29, Maslen’s method, which is relative-
ly straightforward to apply, can be considered an excellent example of the gen-
eral class of thin shock-layer methods. Also, note that Maslen’s method applies
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to blunt as well as to slender bodies. Because of its accuracy and simplicity,
Maslen’s method has found frequent applications in inviscid hypersonic flow
analysis, including up to the present day.

410 SUMMARY AND COMMENTS

Hypersonic aerodynamics is highly non-linear; even the assumption of small
perturbations. which in subsonic and supersonic flows leads to simple linear
theories. does not yicld a system of linear equations for hypersonic flow. In spite
of this, various approximate mcthods have been successfully developed for
the analysis of inviscid hypersonic flows. We have discussed several of these
methods in the present chapter, some of them predicated upon the hypersonic
small-disturbance equations, given by T3gs. (4.41)-(4.45). In particular:

1. The mathematieal basis of hypersonic similarity rests upon these equations;
from them, we have shown that flows over affinely related bodies with the
same values of 3, M, 7, und %/t will have the same values of C /1%, ¢/1% ¢,/7*
(where ¢, and ¢, are referenced to planform area). Here,

M , v = hypersonic similarity parameter.

For « three dimensional body where base area is used as the reference for C;,
and C,, hypersonic similarity states that affinely related bodies with the same
values of 7. M .1, and @/t will have the same values of C, /1t and C,/1>. Since
hypersonic similarity stems from the hypersonic small-disturbance cquations,
this concept applics only to slender bodics at small angles of attack.

2. The hypersonic small-disturbance equations themselves can be directly solved
for the flowficld between the shock wave and body; a particular application
to cones was used here to illustrate such a solution based on hypersonic
small-disturbance theory. Although such solutions usually require a numeri-
cal treatment at some stage, the results can sometimes lead to closed-form
analytical formulas, such as are repeated below for the pressure cocfficient on
a slender cone at hypersonic speeds,

C, b+ DK*+2 /y+1 1
L=t In{ —— 4+ — 5 4.126
2= TRy TR (4.126)
as well as for the cone shock wave angle f,
11
K,= 1<\/»27+F (4.125)

where. in the above. K = M 0, and K, = M fi. The hypersonic small-distur-
bance cquations also lead to the hypersonic equivalence principle, which states
that the steady hypersonic flow over a slender body is equivalent to an un-
steady flow in one less space dimension. A corollary to this principle is blast
wave theory, which allows the self-similar solutions to the unsteady flowfield
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generated by an instantaneous release of energy along a line or plane to be
carried over to the steady flow downstream of the nose of hypersonic blunt-
nosed slender bodies. The results, as documented in Ref. 36, are:

Blunt-nosed flat plate (first approximation)

Cp\*?
~——«0121M2 (4.156)
Pa x/d
2/3
"= o7macy (4.157)
d d
Blunt-nosed flat plate (second approximation)
C 2/3
o121 M2< /l> +0.56 (4.158)
r 0.774
S o W i S— 4.159
<d>(’ 0T AT /] = 109 @1
Blunt-nosed cylinder (first approximation)
P~ 0067M2 Vo (4.160)
Pu Cox/d
; 12
"= 0795y (4.161)
d d
Blunt-nosed cylinder (sccond approximation)
P ooeim? Vo + 044 (4.162)
P x/d
r/d (xjdy [ (yd) |
——= L, =0.795 + 305 -5 4.163
MmC,l)/z 0.7 \/]\/I Cll)/z (MZ CI/Z) ( o )

Note that, for a blunt-nosed flat plate, the pressure distribution p/p,, down-
strecam of the nose varies dircetly as M2 and C3%°, and inversely as (x/d)*"?
the shock wave shape varies directly as C}/* and (x/d)**. For a blunt-nosed
cylinder, the pressure distribution p/p, downstream of the nose varies
directly as MZ and C}/?, and inversely as x/d; the shock wave shape varies

directly as C/* and (x/d)'?, that is, it is parabolic.

Mcthods discussed in this chapter which arc not predicated on the hyper-
sonic small disturbance equations, and which therefore are not restricted to slen-
der bodics at small angle of attack are:

1. The concept of Mach number independence. Here, we observe both experi-
mentally and from the governing Euler equations [Eqs. (4.1)-(4.5)] with the
appropriate boundary conditions that certain nondimensional acrodynamic
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quantities such as C;. C),. and C, become relatively independent of Mach
number above a sufliciently higher value of M, which for blunt bodies can

be as low as M, =3

. Thin shock-layer methods. These methods make use of approximations based

on the thinness of hypersonic shock layers. As an example, Masten’s method

is a straightforward application of the thin-shock-layer assumption, leading to

a closed-form equation for the variation of pressure across the shock layer as
()

plxap) = p(x) + R(x) [y — ()] (4.177)

which in turn allows the solution for all other flow variables within the shock
laver.

PROBLEMS

4.1

4.2.
4.3.

44.

4.6.
4.7.

4.8

. Referring to Sec. 4.3, prove that the Mach number independence principle applies to

the pressure coefficient €. the lift coefficient €, and the wave drag cocfficient C,, .
Dertve Eqs. (4.48) for the transformed direction cosines.

The condition that two or more different flows over different aflinely related bodies
satisfs hypersonic similurity is that 3, M, 1. and «/t be the same between these flows.
Show how the derivation of the principle of hypersonic similarity, carried out in Sec.
4.5 for zero angle of attack, is modified to include small angle of attack.

The purpose of this problemy is to demonstrate the degree of validity of hypersonic
similurity by plotting data for wedges. Proceed as follows: (1) From exact oblique
shock theory. tabulate €, versus M, for wedges of 0 =5, 10, 15, 20, and 30" half
angles. (2) Plot these data for all five wedges on the same piece of graph paper in the
form of C,tan* ¢ versus M, tan 0. (Note that, within the framework of hypersonic
small-disturbance theory, C ftan® 0 = C jt* = C,/0* and M, tan 0 =M, 1=K =
M, ) (3) On the same graph, plot Eq. (2.29). Finally, after observing the results
shown on the graph, make some statements about the accuracy and range of validity
of hypersonie similarity.

. The purpase of this problem is to demonstrate the degree of validity of hypersonic

similarity by plotting data for cones. Proceed as follows: (1) From exact cone results
(such as from Refs. 17 or 18). tabulate €, versus M , for cones of 0, = 5, 10. 15, 20,
and 30 hall angle. (2) Plot these data for all five cones on the saume piece of graph
paper in the form of C tan® 0,=C/t* and M tan 0,= M 1. (3) On the same
araph, plot Eq. (4.126). After observing the resuits, make some statements about the
accuracy and range of validity of hypersonic similarity. Are these conclusions any
different than those made in Prob. 4.4 for wedges?

Derive Eq. (4.89).

For the solution of hypersonic flow over a slender cone, this problem demonstrates
how the flowficld variables can be obtained after a solution of Eq. (4.106) is carried
out. For example, g (4123) gives an equation from which p can be obtained in
terms of 7. Derive the analogous equations for & and p as function of f and f".
Finally. show how & can be obtained.

. Derive Egs. (4.154) and (4.155).
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5.1 GENERAL THOUGHTS

Chapter 4 covercd material which is in the realm of “classical™ hypersonic acro-
dynamics. i.c.. theoretical analyses developed in the 1950s and 1960s before the
widespread use of high-speed digital computers. Indeed, before the age of the
computer, there was no other recourse; for the analysis of inviscid hypersonic
flows, the exact nonlinear Euler equations [Egs. (4.1)-(4.5)] do not yield closed-
form theoretical results of a general nature, hence various physical approxima-
tions had to be applied to these exact equations in order to obtain a system of
approximate equations more tractable to theoretical analyses. For hypersonic
flows, even these approximate governing equations are still nonlinear but, as we
have seen in Chap. 4, various approximate methods have been successfully de-
veloped to obtain uscful solutions. The point herce is that such solutions are
indeed approximate, cither because the governing equations themselves are re-
duced to simpler form due to approximations about the physics of the flow (c.g.,
small perturbations), or during the course of solution of the exact equations,
various limiting cases are taken (for example, M, — oo). This is why Chap. 4
was subtitled “approximate methods.” However, even though such methods are
“classical,” keep in mind that the results are frequently very practical and useful,
and indeed many of these classical methods are used extensively today in the
engineering analysis of hypersonic flows.

In contrast, the present chapter is subtitled “exact methods.” This requires
some definition. Here, we will deal with the exact. governing Euler equations for
inviscid flow without any subsequent reduction of these equations based on
physical approximations. Since we arc using the full cquations [Egs. (4.1)-(4.5)]
without any approximations, and since these are the exact equations for inviscid
flow (over all parts of the flight spectrum, from subsonic to hypersonic), we will
label the subsequent solutions of these equations as “exact.” This is a slight
mispomer, however, because all the “cxact” solutions are numerical, and any
numerical solution is subject to numerical error. For example, we will see that
the exact, governing partial differential equations can be replaced by finite-differ-
enee equations: these difference equations are numerically and theoretically dif-
ferent than the original partial differential equations because of the truncation
error that is always present in the finite-difference formulation. Moreover, dur-
ing the course of the numerical solution of these difference equations, computer
round-off errors are incurred. Finally, there is sometimes a lack of preciseness
brought about by the numerical treatment of boundary conditions. So, strictly
speaking. even numerical solutions are not truly “exact”™ solutions of the govern-
ing cquations. However, with this slight proviso in mind, we will proceed to
label such numerical solutions as “exact™ solutions because they begin with the
exact governing cequations. Stated slightly differently, once we choose to work
with the full Euler equations, then the only type of solution with any generality
must be numerical; hence, the terms “exact” solutions and “numerical” solutions
are used here synonymously.
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In more modern terms, this chapter deals with the application of computa-
onal fluid dynamics (CI'D) to inviscid hypersonic flows. This chapter could not
tve been written 25 years ago; indeed, CFD is a newly emerging dimension in
Tuid dynamics which now complements the more classical dimensions of pure
xperiment and pure theory. Applications of CFD are impacting acrodynamic
escarch and development across the entire flight spectrum, from subsonic to
wypersonic speeds. The impact of CFD is particularly strong on hypersonic
terodynamics, because the availability of hypersonic wind tunnels and other hy-
sersonic ground-test facilitics is severely limited, both in regard to number of
acilities as well as the practical flight range of Mach number, Reynolds number,
ind temperature levels attainable in such factlities. Thus, in the modern world
»f hypersonics, CEFD serves as a powerful tool for research, development. and
lesign.

In this chapter, there is no intent to give a detailed presentation of the
undamentats of CFD; such an endeavor justifies a book on that subject alone.
Fhe interested reader is encouraged to study Refl. 52, which is an excellent mod-
o classroom text on CIFD. On the other hand, in order to understand and
ippreciate some of the inviscid-flow calculations discussed here, some of the
zeneral ideas and methodology of CFD must be understood. The assumption is
made here that the reader has not had formal education or experience in CFD.
ind therefore, as the case demands, we will present various details of the compu-
tational techniques in a fashion that will be reasonably self-contained.

As a final introductory note, advances in CFD now make possible the
inviscid, three-dimensional, unsteady flowfield solution over complete flight vehi-
e configurations. Morcover, there are a variety of different computational tech-
niques, ranging from the mcthod of characteristics (which is in reality an older
“classical” technique now made very practical by high-speed digital computers),
o fintte-diflerence, finite-volume, and finite-clement methods. In the present
chapter, only o representative selection of solutions and solution procedures will
be given. The choice is based on the author’s experience and bias—ten different
authors would most tikely make ten different choices, all justified in their own
way. The result, however, would be the same, i.e., the absolute appreciation that
the Luler equations arc now made solvable by a scemingly endless varicty of
numerical techniques. The purpose of this chapter is to give the reader the flavor
of such solutions as applied to hypersonic inviseid flows.

52 METHOD OF CHARACTERISTICS

In 1929 in Germany, Ludwig Prandtl and Adolf Busemann were the f{irst to
apply the method of characteristics to a problem in supersonic flow; they uti-
lized a graphicat approach to construct the contour of w supersonic nozzle. Since
then, the method of characteristics has become a classical technique for the solu-
tion of inviscid supersonic and hypersonic flows, both internal and external.
Because it is classical and widely known, and because it is usually part of a basic
course in compressible flow, the assumption is made that the rcader has some
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familiarity with the method of characteristics: hence, the method will not be
developed in detadl here. Rather, some of the general considerations will be
reviewed. and some applications to hypersonic flows will be shown. For the
interested reader. an excellent and detailed presentation of the method of char-
acteristics applied to various acrodynamic problems is given in Rel. 53. Sec also
Rel. 4 for an introductory presentation.

The method of characteristics is useful when the system of governing par-
tial differential equations is hyperbolic. For this case, the problem is mathemati-
cally well-posed by starting from an initial data surface, and calculating the flow
along the characteristic directions. Steady, inviscid, supersonic (and hypersonic)
flow is one such case: the governing Euler equations are hyperbolic, and hence
starting with an initial data surface situated downstream of the limiting charac-
teristics. the supersonic flow can be calculated by marching downstream along
the characteristic lines (if the flow 1 two-dimensional) or characteristic surface
(if the flow 1s three-dimensional). The governing Euler equations for two- or
three-dimensional steady flow [Eqs. (4.1)-(4.5) with d/dr = 0] exactly reduce to
simpler differential equations in one less space dimension, called the compatibil-
ity equations. along the characteristics. For two-dimensional flow, these compat-
ibility equations become ordinary differential equations which are more readily
solved than the original partial differential equations. The solution of the com-
patibility cquations and the cvolution of the characteristic directions are in gen-
eral computed simultaneously as the solution procedure marches downstream
from the initial data surface. In this manner, the entire supersonic and hyper-
sonic inviscid flowfield can be caleulated in an “cxact” fashion.

There is a hicrarchy ol solutions involving the method of characteristics.
The stmplest application of the method involves a steady, two-dimensional, irro-
tational flow. This is {requently the first application encountered by the student
when {irst studving the method. For this application, there are two characteris-
tics at cach point in the flow--the left- and right-running Mach waves. Morc-
over, the compatibility equations which hold along these characteristics are
algebraic relations: this leads to a particularly straightforward solution of the
flow. For a steady. axisymmetric, irrotational flow, the characteristics at each
point are still the left- and right-running Mach waves, but the compatibility
equations are now ordinary differential equations, which are readily solved nu-
merically along the characteristics. On the other hand, for a steady two-dimen-
sional or axisymmetric rotational flow, there are three characteristics lines
through cach point—the left- and right-running Mach waves and the streamtine.
The compatibility equations are appropriate ordinary differential cquations
which hold along these characteristics. Finally, the most complex application of
the method of characteristics is to three-dimensional flows, where the character-
istics are Mach surfaces and stream surfaces, and the compatibility cquations
are, in general, partial differential equations in two space dimensions.

For the application of the method of characteristics to external hypersonic
flow. the aspect of rotationality is of primary concern. To understand this better,
recall that. for a given shaped body, as the supersonic or hypersonic free-stream
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Mach number increases, the strength of the shock wave increases. 1f these strong
shock waves have curvature, as sketched in Fig. 5.1 for both slender and blunt
bodies, then the entropy increase across the shock wave will be different from
one streamline to the next. For example, in both Figs. 5.1a, and 5.1b, streamline
1 has a higher entropy than streamline 2 because it has come through a stronger
portion of the shock wave. This is particularly acute for the blunt body in
Fig. 5.1h, where the bow shock wave is highly curved, and an intense region of
large entropy gradients is produced in the nose region. This is the source of the
entropy layer discussed in Sec. 1.3B, and sketched in Fig. 1.4, which should be
revicwed at this stage. Such entropy gradients occur behind curved shock waves
at any supersonic Mach number, but because the shocks are stronger and
ustally more highly curved at hypersonic Mach numbers, then the entropy gra-
dients become more severe. In turn, this introduces a large amount of rotational-
ity into inviscid flows over hypersonic bodies, as can be quantitatively obtained
from Crocco’s theorem (sec Rel. 4), written as follows:

TVs=Vh, —V x(VxV) (5.1)

|///

/S]endcr body

(a)

Blunt body

h

FIGURE 5.1
Bodies with curved shock waves.



HYPERSONIC INVISCID FLOWFIELDS: EXACT METHODs 153

Here, Vi, is the gradient in total enthalpy at a point in the flow; for the steady,
adiabatic flows considered here, h, is constant and hence Vi, =0. Also In
Eq. (5.1). V x V is the vorticity; il the vorticity is finite, then by definition the
flow is rotational. From Eq. (5.1), with Vi, = 0, we see that an entropy gradient,
Vs, directly produces vorticity in the flow, hence making such flows rotational.
For hypersonic applications, these flows can be highly rotational. This is illus-
trated in Fig. 5.2 (obtained from Rel. 15), which gives the variation of vorticity
behind a parabolic bow shock wave as a function of the local wave angle . The
different curves correspond to different values of M. Note that: (1) the vortic-
ity peaks at a large value in the vicinity of the sonic point on the shock, and (2),
the magnitude of the vorticity increases with Mach number. The point here is
that any application of the method of characteristics to calculate the inviscid
flow over a frypersonic body should definitely utilize the rotational method of
characteristics.

Historically, the first major application of the rotational method of charac-
teristics was made by Antonio Ferri in 1946, as described in Refl. 54. (Ferri was
an ebullient Italian aerodynamicist who developed a pionecering supersonic aero-
dynamic laboratory in Guidonia near Rome during the 1930s, and who was
brought to the United States toward the end of World War 11 to help foster
research in supersonic flows at the NACA Langley Memorial Laboratory in
Virginia.) For example, Ferri’s work was the basis of the characteristic calcula-
tions shown in Figs. 3.12, 3.13, 3.18, 3.20, 3.21, and 4.4. For technical details in a

Sonic M

=)

Il
90 60 30 0
fi. degrees

FIGURE 5.2
Vorticity behind a parabotic shock wave; p/d = (x/d)'/?, y = 14. (From Ref. 15)
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more modern setting, make certain to read the sections on the rotational meth-
od of characteristics in Zucrow and Hoffman (Ref. 53).

To this point in the present section, we have been reviewing some general
considerations about the method of characteristics, relying somewhat upon prior
familiarity with the method on the part of the reader. In the interest of being
slightly more precise, the following is a brief outline of the application of the
rotational method of characteristics to a two-dimensional or axisymmetric exter-
nal flow.

1. The method must be started from an initial data linc which lies totally within
the supersonic portion of the flow, and in particular should be downstream of
the limiting characteristics (see, for example, Ref. 4). The flow properties on
this initial data line must be obtained from another, independent calculation.
The usual methods of obtaining such initial data are as follows:

a. If the body has a pointed nose with an attached shock wave, such as
shown in Fig. 5.1q, then the flow in the immediate vicinity of the nose is
totally supersonic, and it can be closcly approximated by wedge flow (in
the two-dimensional case) or conical flow (in the axisymmetric case. Then,
as indicated in Fig. 5.34, all flow properties are known along the initial
data line from the exact oblique shock solution, or from the Taylor-
Maccoll conical solution.

b. 1f the body has a blunt nose with a detached bow shock wave, an appro-
priate blunt-body solution must be carried out (blunt-body solutions are
discussed 1n Sec. 5.3). The initial data line must be taken along or down-
strecam of the limiting characteristic, as shown in Fig. 5.3b.

In both the above cases, the flow must be totally supersonic along the initial

data line; morcover, care should be taken not to use a characteristic line as

the initial data line.

2. Starting from the initial data line, the solution progresses by marching down-
stream along the characteristic lines. A single element of this process, called a
unit process, is illustrated in Fig. 5.4. Here, points 1 and 2 are two points on
the initial data line; atl flow properties, including the streamline angles 8, and
(),, are known at these points. From the known Mach numbers, hence the
known Mach angles j¢, and g, at thesc points, construct the left- and right-
running Mach waves (designated by C, and C _, respectively) at both points,
as shown in Fig. 5.4. (Since the unit process involves only small distances in
the flow, all constructed Mach lines and streamlines arc drawn as straight
lines between adjacent points.) The Mach waves are characteristic lines, hence
C, and C arc appropriate designations for these lines. Note that the C.
characteristic from point 1 and the C, characteristic from point 2 intersect at
point 3, thus locating point 3 in space. We wish to calculate the flow proper-
ties at point 3.
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7777

M, >1 Slender body
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cone

P Initial data line
flow — /
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/

)

initia! data line

—— Limutmg characteristic

M, >1 -~ Sonic line
—
Blunt body
b
FIGURE 5.3

Initial data tines for slender and blunt-body flows.

3. Assume that the streamline through point 3 is at an angle 053, where 0, is an
average between the known (); and 0,. (This assumption is made more accur-
ate by iterating the unit process. as will be noted later.) Trace the streamline
at point 3 backward until it intersects the initial data line at point 4, as
shown in Fig. 5.3. Recall that, for rotational flow, this streamline 1s also a
characteristic line.

4. Calculate the flow properties at point 3 by solving the compatibility equa-
tions along the characteristic lines. These cquations are obtained from the
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Initial
data line 3 —

FIGURE 54
Unit process.

governing Euler cquations [Egs. (4.1)-(4.5)] after considerable manipulation
(sce Refs. 4 and 53), and arc:

1 jsin 0sin pd

Alony Muach lines - ——,(rp -+ do ‘/11 TSR (5.2)
pV=tan u sin{(0 + ) v

Along streamlines ds =0 (5.3)

In liq. (5.2), the plus and minus signs correspond to the €, and C_ charac-
teristics, respectively, and j =0 or | for two-dimensional and axisymmetric
flow, respectively. Equation (5.3) is simply a statement that the entropy is
constant along a streamline in an inviscid, adiabatic flow —a statement al-
ready countained in Eq. (4.5). Equation (5.3) can be replaced by two relations
that depend on constant entropy along a streamline, namely,

Along streamltines dp = —pV dV (5.4)
Alony streamlines dp = a*dp (5.5)

Equation (5.4) is the familiar Euler equation which holds along a streamline
in a rotational flow; it can be readily obtained by a suitable manipulation of
Eqgs. (4.2) (4.4) along with the definition of a streamline, as shown in Refl. 5.
Lquation (5.5) is simply based on the definition of the speed of sound, a® =
(Cp/Cp),; since s is constant along the streamline, then any change in pressure
along the streamline dp is related to a corresponding change in density along
the streamline dp, through the relation a? = (dp/dp). Please note that whereas
dp in Egs. (5.4) and (5.5) denotes a change in pressure along a streamline, dp
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in Eq. (5.2) denotes a change in pressure along the Mach lines. Returning to
Fig. 5.4, we now have a system of compatibility equations, namely Egs. (5.2).
(53.4). and (3.5), which hold along the characteristic lines. The integration of
these equations along the characteristics can be carried out in a variety of
ways. For simplicity, let us replace the differentials in Egs. (5.2), (5.4), and
(5.5) with forward differences. For example, Eq. (5.2) written along the C_
characteristic through point 1 in Fig. 5.4 is

Jjsin (),ﬂsin iy V(y37—7 yi)

Py — Py
s — {0, =0+
V7 tan uy s X sin (0, — ) Y1

=0 (5.6)

Equation (5.2) written along the C, characteristic through point 2 is

Py~ P2

jsin 0,810 gy (33 —
= 4 (0, — 0y 43020 e bs=v2) _, (5.7)
paVstan p, sin (0, + p,) ¥,

Equation (5.4) written along the streamline is

Py — Pa= —paVy(Vs = Vi) (5.8)

Equation (5.5) written along the streamline is

Py — Py = ai(p3 — pg) (59

In Egs. (5.6)-(5.9), all conditions at points 1, 2, and 4 are known (conditions
at point 4 are interpolated between points | and 2), The locations of points
3 and 4 arc known, from steps 2 and 3 above, hence y, is known. Thus,
Egs. (5.6) (5.9) are four algebraic equations which can be solved for the four
unknowns, p;. 03, V3 and p,.

. Repeat steps 2 through 4, where now the slopes of the C_ and C_ character-

istics are based on an average of 0, uy, 05 and u;, and the streamline at
point 3 is traced back using the value of (5 obtained in step 4. Iterate until
convergence is obtained. At the completion of this iteration, point 3 is now
accurately located in space, and the flow propertics at point 3 are accurately
obtained.

The above unit process is carricd out from point to point in a sequential

fashion, marching downstream from the initial data linc. Slight modifications to
the unit process are made to satisly the boundary conditions at the shock wave
and the body: see Rel. 53 for details. In this fashion, the complcte inviscid flow-

field between the body and the shock wave can be numerically constructed.

Again, emphasis is made that this is an “exact” solution; the compatibility equa-
tions [Eqgs. (5.2)-(5.3)] arc obtained directly from the exact Euler equations

without any mathematical approximations or further physical simplifications,
and any crrors introduced in the solution arc numerical errors involved with the
finite-difference representation of the compatibility equations. In this vein, the

method of characteristics becomes truly exact in the limit of an infinitely fine
characteristics mesh.
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FIGURLE 58
A typical characteristics mesh. (From Zurrow and Hoffman, Ref. 53.)

An example of a characteristics mesh for the calculation of the rotational
flow over a two-dimensional body is shown in Fig. 5.5, obtained from Rel. 53.
For clarity, only the Mach lines are shown here, although keep in mind that the
streamlines are also characteristics. This calculation is made for a supersonic free
strecam with M, = 3. at hypersonic Mach numbers, the shock wave would be
much closer to the surface, and because the Mach angles would be smaller, the
characteristics mesh would be more highly skewed. The pressure distributions
behind the shock wave and along the body corresponding to the case in Fig. 5.5
arc shown in Fig. 5.6. (Note that the pressure behind the shock is higher than
that along the body. This is another example of the normal pressure gradient
neeessary to balance the centrifugal force along curved streamlines: for the con-
vex streanlines over the body in Figs. 5.5 and 5.6, the pressure quite naturally is
going to decrease from the shock to the body, as originally discussed in conjunc-
tion with IFig. 3.9). The results shown in Figs. 5.5 and 5.6 are included here only
to tustrate the use of the rotational method of characteristics for a two-dimen-
sional body, and to emphasize again that the method is a reasonable approach
for the caleulation of two-dimensional and axisymmetric inviscid hypersonic
flows.

The vast majority of practical acrodynamic problems involve three-dimen-
sional flows. The method of characteristics can also be applied to such flows (see
for example, Refs. 55-59); however, the three-dimensional method of characteris-
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FIGURY. 56
Pressurc distributions behind the shock and on the body for the case shown in Fig. 5.5. (From
Ref. 53.)

tics requires considerably more effort than its two-dimensional counterpart. In
steady. three-dimensional rotational flow, the characteristics are surfaces, namely
Mach cones and stream surfaces. In gencral, the compatibility equations which
hold along these characteristic surfaces arc partial differential equations in two
space dimensions. To examine this in morce detail, consider Fig. 5.7, which illus-
trates a general supersonic or hypersonic three-dimensional flowficld. Point b is
an arbitrary pomt in the flow. Through this point, the characteristic directions
generate two sets of three-dimensional surfaces—a Mach cone with its vertex at
point b and with a half-angle equal to the local Mach angle g, and a stream
surface through point h. The intersections of these surfaces establish a complex
three-dimensional network of grid points. Moreover, as if this were not compli-
cated cnough. the compatibility cquations along arbitrary rays of the Mach cone
(called bicharacteristics) are partial differential equations which contain cross
derivatives that have to be evaluated in directions not along the characteristics.
Nevertheless, such solutions can be obtaimed: see Ref, 53 for a detailed discus-
sion of these matters.

Although a detatled presentation of the three-dimensional method of char-
acteristics is bevond the scope of this book, it is important to note some results
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FIGURE 5.7

Three-dimensional ¢haracleristic surfaces.

obtained with this method. In particular, we will examine the calculations of
Rakich (Refs. 58 and 59); in this work, Rakich utilized a modification 1o the
general philosophy of the three-dimensional method of characteristics, which
somewhat simplilies the calculations. In this approach, which is sometimes
labeled “semicharacteristics,” or the “reference plane method,” the three-dimen-
sional flowfield is divided into an arbitrary number of reference planes contain-
ing the centerline of the body. This is sketched in Fig. 5.8 for the case of an
axisymmetric body at angle of attack; Fig. 5.8 shows a front view of the body

Reference plancs

FIGURE 5.8
Grid network in a cross-sectional plane for an axisymmetric body at angle of .attack; three-dimen-
sional method of characieristics.
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Reference plane

FIGURE 59
Grid network in the meridional plane for an axisymmetric body at angle of attack; three-dimen-
stonal method of characteristics.

and shock wave. Each reference plane is identified by its angular location, @,
®,, etc. One of these planes, say ® = @,, is projected on Fig. 59. In this par-
ticular reference planc, a series of grid points are established along arbitrarily
spaced straight lines locally perpendicular to the body surface. These grid points
are not the inicersections in a systematic characteristic mesh (such as shown in
Fig. 5.5 for the two-dimensional case); rather, they are placed along arbitrary
straight lines in much the same way that a finite-difference grid is established (10
be discussed in subsequent sections). This represents a major simplification over
the general three-dimensional method of characteristics. In Fig. 5.9, assume that
the flowfield properties are known at the grid points denoted by solid circles
along the straight line ab. Furthermore, arbitrarily choose point 1 on the next
downstream line, ¢d. Let €, C_, and S denote the projection in the reference
plane of the Mach cone and streamline through point 1. Extend these character-
istics upstream until they intersect the data line ab at the cross marks. Data at
these cross marks are obtained by interpolating between the known data at the
solid circles. Then. the flowfield properties at point I are obtained by solving the
following compatibility equations along C,, C_, and S (sec Ref. 58 for a deriva-
tion of thesc cquations):

B op 20 o
oV C. + cos 4)0C+ =(f, + fif2)sinu (5.10)
s ép 20 .
[)—V:‘; b‘ci — CO0S {3C_ = (fl — ﬁfz) Sin [.t* (51 1)
0
—¢—f3 (5.12)

o5~
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FIGURE 5.10
Variation of shock-wave shape; comparison between theory and experiment. 0, = 15°, « = 10°,
M, =10,y = L4 (From Rakicl and Cleary, Ref. 59.)

where ff = \/M: — 1, p* is the angle between S and C, or C_ (i.c.. the projec-
tion of the Mach angle u onto the reference plane), 0 is the flow angle from the
x axis in thc meridional plane (that is, 0 = tan™ ! p/u, wherc u and v are the
veloeity components in the v and r directions respectively), ¢ is the crossflow
angle (that is, ¢ = sin” ! w/p, where w is the velocity component in the @
dircction), and [, and f, arc expressions containing the cross derivatives (sce
Ref. S8).

The above limited description is intended only to give the flavor of
Rakich’s method, and to set the stage for the presentation of some results illus-
trating the nse of the three-dimensional method of characteristics. Such results
are given n IMigs. 5.10 to 5.14, obtained from Ref. 59. In these figures, results are
given for the hypersonic flow over a blunt-nosed, 15-degree cone at angle of
attack: theoretical results for the inviscid flow obtained by Rakich using the
three-dimensional method of characteristics are directly compared with cxperi-
mental wind tunnel results. For example, Tig. 5.10 shows the calculated and
measured shock wave shape in air (3 = 1.4) at three meridional planes, ® =G,
90, and 180 . for an angle of attack of 10 degrees at Mach 10. For the wind
tunnel data. the Reynolds number referenced to the cone base radius was
0.6 x 10", Agreement between the three-dimensional method of characteristics
and cxperiment is excellent for this case. This figure also illustrates the effect of
nosc bluntuess on the shock shape. The shock location for a sharp-nosed cone
at 1S angle of attack is shown as the dashed lines at the right of Fig. 5.10; note
that nose bluntness displaces the leeward portion of the shock (@ = 07) outward,
whereas the windward portion of the shoek (0 = 180") is not noticeably dis-
placed. The calculated variation of the shock wave angle f§ with axial distance x
is shown in Ifig. 5110 It is well known that shock waves around blunted cones
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FIGURE 5.11

Variation of shock-wave angle; calculations from the 3-dimensional method of characteristics. 0, =
187, a2 =10 M, =10. = 14. (From Ref. 59.)

at zero angle of attack exhibit a local minimum in the wave angle, ie., as the
strong bow shock wave progresses from the normal shock at the nose to the
weaker shock downstream, f§ first decreases, reaches a local minimum, and then
increases. finally approaching the sharp conc result far downstream. For the
conditions shown in Fig. 5.11, this zero-angle-of-attack case results in the local
minimum [ occurring at about x/R, = 10, as shown in Fig. 5.11 by the dashed
lhine labeled 2 = 0. For the angle-of-attack case, the method-of-characteristics re-
sults indicate @ similar trend. except with the minimum f occurring at different
axial locations, as shown by the sohid lines in Fig. 5.11. Note that the wave
angles for the blunted cone eventually approach the sharp-cone results at large
distances downstream of the nose, as seen at the right of Fig. 5.11. Surface pres-
sure distributions are shown in Fig. 5.12. Aguin, excellent agreement is obtained
between the three-dimensional mcthod of characteristics and experiment. In
analogy with the shock angle, note that the pressure goes through a local mini-
mum as illustrated in Fig. 5.12. In expanding over the blunt nose, the pressure
overcxpands downstream of the shoulder, falling below the sharp cone result,
and then recompresses to the sharp cone result far downstream. (We note here a
weakness of the blast wave theory discussed in Section 4.8; blast wave theory is
incapable of predicting the type of overexpansion and reccompression shown in
Fig. 5.12) Figure 5.13 shows the variation of Pitot pressure in the flowficld,
namely along lincs locally perpendicular to the body, and cxtending from the
body to the shock wave. A comparison with experiment of detailed flowficld
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FIGURE 5.12
Pressure distribution over a blunt-nosed cone; comparison belween theory and experiment. 0, = 15,
o= 10" Re = 0.6 x 10° M, =10, y = 1.4. (From Ref. 59)
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FIGURE 513
Pitot pressure variations {from the body to the shock. 0, = 15%, a =10, M, =10, y = 1.4, Re =
0.6 x 10° (From Ref. 59.)
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information throughout the shock layer (as opposed to just along the body sur-
face) is always a good test of any flowfield theory; in Fig. 5.13, the comparison
between the wind tunnel data and the method-of-characteristics calculation is
quite good, For the lceward section of the flowfield (d = 0°), some lack of agrec-
ment between theory and experiment occurs near the body surface; this is due to
the thick viscous boundary layer on the leeward side, which is not taken into
account by the inviscid theory. On the windward section (® = 180"), the strong
variation of Pitot pressure within the entropy layer (see Sec. 1.3) is very appar-
ent. Pitot pressure reaches a peak just outside the entropy layer, and then
decreases towards the shock wave. This is because. outside the entropy laver and
boundary layer on the surface, the local supersonic Mach number increases to-
ward the shock wave, hence resulting in a progressively lower Pitot pressure.
Finally, to emphasize the three-dimensional nature of this flowfield, Fig. 5.14
illustrates the circumferential surface-pressure distribution around the blunt
cone at angle of attack. Unlike the previous data, Fig. 5.14 pertains to hyper-
sonic flow of heltum (y = 1.67) at M = 14.9. Once again, cxcellent agreement
between experiment and the three-dimensional method of characterstics is
obtained.

On this note, we end this discussion on the method-of-characteristics, and
its application to hypersonic inviscid flows. We have scen that the method of
characteristics is a viable approach toward “exact” solutions of such flows, and
indeed has been used extensively for such cases, especially in the time period
before 1970. However, the method of characteristics is sometimes tedious to set

Blunt cone

3-dimensional method of characteristics

O Experiment
1.0~

S —
0 90 180

@, deg

FIGURE 5.14
Circumferential surface-pressure distribution at x/R, = 8; comparison between theory and experi-
ment in heljum. 0, = 15", a = 20°, M. = 14.9, y = 1.667, Re = 0.86 x 10°. (From Ref. 59.)
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4p and program (in the days belore high-speed digital computers, the method of
characteristics was carricd ottt by hand calculations—the ultimate in tedious-
ness), with particular complexity in three-dimenstional case. For this reason, in
more recent times, simpler {inite-difference solutions have supplanted the meth-
ad of characteristics in many applications. Modern finite-difference methods are
treated in the remainder of this chapter.

353 THE HYPERSONIC
BLUNT-BODY PROBLEM

Let us return to the roadmap in Fig. 1.23, and scan over the items discussed so
far in this book. Starting with the basic hypersonic shock relations in Chap. 2.
we have covered all of the left branch of Fig. 1.23, and most of the second
branch, down to and including the method of characteristics. These sections of
the roadmap, and henee all the preceding discussion in this book. pertain to the
state of the art in hypersonic acrodynamics prior to 1966. In fact. if this book
were being written in 1966, our discussion of inviscid hypersonic flow would be
essentially finished at this point, cxeept for some mention of the caleulation of
the flow over a blunt hypersonic body. However, this discussion would have
been inhibited by the then-existing scvere difliculties in obtaining blunt-body
solutions. This is emphasized in a statement made in 1966 by Hayes and Prob-
stein (Ref. 60), to the effect that “in spite of the amount of effort that has gone
into this problem in recent years, at present no single method has been agreed
on as being the best for calculating the hypersonic flow past general blunt
shapes.™ This situation changed rapidly in 1966 when the first practical blunt-
body solution was published by Moretti and Abbett (Ref. 61). This solution was
obtained by means of a time-marching finite-difference technique which greatly
stmplified the caleulation of flows over blunt hypersonic bodies. Indeed, the gen-
erat idea of using time-marching methods to caleulate steady flowficlds for a
whole host of different problems is now a major endeavor in computational
ftuid dynamics. The situation has changed so rapidly that the hypersonic blunt-
body problem. which in the 1950s and early 1960s was onc of the major re-
search problems of the day—with millions of dollars and the efforts of scores of
rescarchers spent on ifs solution —is today an extended homework problem in
several university courses i1 computational fluid dynamics. Because of the im-
portance of the blunt body in hypersonic acrodynamic applications, and because
of the cfficiency and power of the time-marching technique used to solve such
blunt-body flows, both will be discussed at Iength in this section.

On a practical basis, the blunt body is a particularly important shape in
hypersonic acrodynamics becanse all hypersonic vehicles have blunt noscs to
reduce acrodynamic heating. Such heating is a driving design factor for most
types of hypersonic vehicles (as we will soon see in Part IT of this book). Indeced,
in Chap. 6 we will demonstrate that stagnation-point acrodynamic heating var-
ics inversely as the square root of nose radius; hence, the larger the nose radius,
the lower the acrodynamic heating. This fact was not always recognized. In the
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1940s and carly 1950s, hypersonic acrodynamic practice was viewed as a high-
speed extension of supersonic acrodynamic practice, where slender bodics with
sharp leading cdges were employed to produce the weakest possible shock waves
with an attendeat low wave drag. However, as M, increases, aerodynamic heat-
ing becomes a major factor, and the heat transfer to a sharp-nosed vehicle be-
comes severc. (If a hypersonic vehicle in flight does employ a sharp leading edge,
nature will soon blunt it by melting away the surface via intense aerodynamic
heating.) The desirability of a blunt nose to reduce acrodynamic heating was
first advanced by H. Julian Allen in the mid-1950s. Some simple reasons for this,
and some of the historical background, arc given in Chap. 1 of Ref. 5 and Chap.
8 of Ref, 1. which should be consulted for more details. However, on a heuristic
basis, we can demonstrate the viability of a blunt body in reducing acrodynamic
heating as follows. Consider a hypersonic vehicle at high altitude and high
velocity, hence with large values of potential and kinetic energy. Imagine the
vehicle returns to the ground at zero velocity, hence the potential and kinetic
energics are now both zevo. Where has all the energy gone? Answer: into the air,
and into the body. The mechanism for heating the air is in part the temperature
increase across the shock wave. On one hand, if the body were slender with a
sharp nose. the shock wave would be weak; hence less encrgy would go into
heating the air. and move into heating the body. On the other hand, if the body
had a blunt nose. then the bow shock wave would be strong; hence more energy
would go into heating the air, and less would be available to heat the body, On
this physical argument alone, we can see why a blunt nose reduces the acrody-
namic heating to a body. The point herc is that blunt-body flowfields are an
important part of the study of hypersonic acrodynamics. Clearly, a detailed
knowledge of the flow in the blunt-nose region is essential to the accurate pre-
diction of the heat transfer distribution around the nose, as well as 1o the de-
tatled structure of the entropy layer created in the nose region. In turn, the
propertics of the blunt-body shock layer, as well as the shape of the shock wave
in the nose region. can have a strong impact on the body surface conditions far
downstream of the nosc: recall. for example, the blunt-noscd cone results dis-
cussed in Sce. 5.2. Furthermore, recall that the method-of-characteristics solu-
tions over the blunt cone as seen in Sce. 5.2 must be started {rom an initial data
line obtained from a blunt-body solution: thus, the accuracy of such blunt-body
solutions is critical 1o the accuracy of the method-of-characteristics solutions
downstream. For all of these reasons, and more, the blunt-body problem dis-
cussed in the present section is an essential aspect of hypersonic flow. Here, we
will treat the inrviscid blunt-body flow, which is particularly important for the
prediction of surface pressure distribution, shock wave shape, entropy layer
structure. and for the calculation of properties at the edge of the boundary layer.
Finally riscous blunt-body flows will be treated in Part IT of this book.

What made the hypersonic blunt-body problem originally so hard to solve,
and why is it an almost routine calculation today? To answer this question, let
us examine some physical aspeets of the blunt-body shock layer. Consider the
steady flow over a blunt body moving at supersonic or hypersonic speeds, as
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shown in Fig. 5,15, The shock wave in front of this body is detached and curved,
ranging {from a normal shock wave right at the nose, and becoming a weak
Mach wave at large distances from the body. Hence, this single shock wave
represents all possible oblique shock solutions for the given upstream Mach
number M, with the wave angle ranging from f# = 7/2 to f# = u. where y is the
Mach angle. Behind the normal, and nearly normal, portions of the shock wave,
the flow is subsonic, whereas behind the more oblique portion of the shock wave
the flow is supersonic. (Sec Ref. 4 for a general description of shock wave phe-
nomena.) Mence, the blunt-body shock layer is a mixed subsonic supersonic
flow, where the subsonic and supersonic regions are divided by sonic lines,
shown as the dashed lines in Fig. 5.15. In the steady, subsonic regions the gov-
crning Euler cquations [Egs. (4.1)-(4.5) with 9/0t = 07 are mathematically ellip-
tic, whercas in the supersonic regions these same equations are mathematically
hyperbolic. (For a description of these mathematical classifications, and their
impact on the fluid dynamic equations, see Ref. 4.) The same Euler equations
obviously apply in all regions of the flowfield. However, their clliptic nature in
the subsonic region means that the flow at any given point depends simulta-
neously on the propertics at all other points in the subsonic region, and in
particular on the conditions along the total boundary of the subsonic region. 1n
contrast, their hyperbolic nature in the supersonic region means that the flow at
any given point depends only on the properties at other points which are con-
tained within the domain of dependence, bounded by Mach lines reaching up-
stream from the given point. This situation is a partial answer to the question
posed at the beginning of this paragraph. Any theoretical or numecrical tech-
nique suitable for the exact solution of the subsonic region is improperly posed
and hence falls apart in the supersonic region, and vice versa. As described

M, > 1

Subsonme
region M < |
governed

by

elliptic
equations 3

Jupersonic or
hypersonic region,
governed by
hyperbolic
—equalions |

Sonic line

FIGURE 5.15
Blunt-body shock layer.
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above, in the carly days of hypersonics, this mixed nature of the blunt-body
flowfield made a consistent exact analysis, valid for both the subsonic and super-
sonic regions exceptionally difficult to obtain. This state of affairs was nicely
reviewed by Van Dyke m 1958 (sce Refl. 62). Indeed, it can be said that until
1966, no practical blunt-body solution existed for routine operation which car-
ried the flow far enough downstream of the sonic line (at least downstream of
the limiting characteristics) to provide valid initial conditions for a method of
characteristics solution in the supersonic region.

This situation changed dramatically mn 1966 when Moretti and Abbett
(Ref. 61) published the first truly practical supersonic blunt-body solution. This
approach utitizes a time-marching (sometimes called time-dependent) finite-differ-
ence solution of the governing wasteady Euler equations, starting from arbitrarily
assumed initial conditions. and calculating the steady flowficld as an asymptotic
Limit at large times. The wnsteady Euler cquations [Eqgs. (4.1)-(4.5)] are hyper-
bolic with respeet to time, no matter whether the flow is locally subsonic or
supersonic. Henee, a time-marching approach starting from assumed initial con-
ditions s a properly posed mathematical problem in all regions of the flow, and
allows the solution of both the subsonic and supersonic regions simultancously
with the same numerical technique. Today, the time-marching approach is al-
ways used for the cxact solution of blunt-body flowfields; the calculations are
considered “routine,” and every major aeronautical company and laboratory
has one or more versions of their “standard™ blunt-body computer program for
this purpose. Because of the importance of these time-marching solutions to
modern hypersonic acrodynamics, the general procedure is outlined below.

Here. we will follow the philosophy as originally sct forth by Moretti and
Abbett (Refll 61). However, in Refl 61 the Lax-Wendroff finite-differcnce tech-
nique was employed, which in modern times has been superseded by a simpler
version developed by MacCormuck (Refl 63). MacCormack’s explicit, predictor-
corrector finite~-diflerence method has been widely used throughout the 1970s
and 1980s, and hence it will be utilized here for our solution to the blunt-body
problem.

For simplicity, assumc a two-dimensional flow. The governing unsteady
Euler equations are, from Egs. (4.1)-(4.3) and (4.6),

p _ [( (f)ll) N A(pv) } 5.13)
ot Jx ey
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To solve these equations for the blunt-body flowfield, the following steps can be
followed.

L. We are considering a giren body shape. Hence, this is a direct solution, ie,
we are calculating the flowficld and shock-wave shape for a given body.

2. Assume the shock-wave shape and shock-detachment distance. Cover the
flowficld between the shock and body with a series of discrete grid points, as
shown in Fig. 5.16a. In this figure, the body shape is specified as b = b(y),
independent of time. The shock-wave shape, which is initially assumed at

y
/
Initially assumed shock shape
/ s=s(p1)
AN
r Downstream boundary
M, > 1 (given) )
— -Body shape (given)
b=b(y)
‘ — ——>
Center line — ! X

(a) Finite-difference grid in phyarcal space for the blunt-body problem

Downstream boundary

= () %
Finite-difference grid in
transformed space for the
blunt-body problem.
0 Center line ! S
(h)

FIGURE 5.16
() Physical space, and (b) computational space for the bluni-body problem.
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time ¢ = 0, will change with time, and is given by s = s(y, t). Here, b and s
are the x coordinates of the body and shock respectively.

. Assume the flowfield variables, p. u, v, p at each of the grid points shown in

Fig. 5.16a. This assumed flowficld will be considered as initial conditions at
time 1 = 0.

. Caleulate the flowfield at the next step in time by means of an appropriate

finite-difference solution of Egs. (5.13) «(5.16). As mentioned carlicr over the
past 15 vears. the most popular finite-difference technique for this purpose
has been the explicit predictor-corrector approach of MacCormack, first de-
seribed tn Refll 63, and discussed in an introductory sense in Refs. 4 and 5.
This technique will be followed here. Since the finite-difference quotients
should be formed in a rectangular grid, the curvilinear physical space
shown in Fig. 5.16a can be transformed into a rectangular space shown in
Fig. 5.16b via

(=270 (5.17)

d

where 6 15 the local shock-detachment distance, § = s — b. In this trans-
formed space. the body (x = b) 1s obtamed from Eq. (5.17) as { = 0. The
shock (x =) is also obtained from Eq. (5.17) as { = 1. Hence, in Fig, 5.16b,
the left side of the rectangular space, { =0, represents all the grid points
along the body. and the right side, { = I, represents all the grid points along
the shock. Since the vy coordinate remains the same in both the physical and
the transformed space. then the top and bottom of the rectangular space
represent the downstream boundary and centerline respectively. In this
fashion, the curvilinear grid in the physical space (Fig. 5.16a) is transformed
to the rectangular grid in the transformed space (Fig. 5.16b). Since the finite-
difference calculations are performed on this rectangular grid, Fig. 5.16h is
also called the computational space.

. For convenience, Moretti and Abbectt also transformed the dependent vari-

ables as
P=lInp
R=1Inp
Yy=Inp—ylnp=P—9yR

Also define:
. db
C=( -1 -—C{cotl
dy
ds .
W = e x component of the shock-wave velocity
a

B=- 0¥

_u—W{+0C
B 1
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In terms of the above transformed dependent and independent variables,
Fqs. (5.13)-(5.16) become:

% R 1¢ 0 v 3

Continuity (—R =—|B ('f + = au + E Ly ‘(;R (5.18)
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(The derivation of these transformed equations is left as a homework prob-
fem.) Note that these equations have been written with the time derivatives
on the left side, and all the spatial derivatives on the right side, for reasons
that will be clear shortly. Also note that the transformed equations, Egs.
(5.18) (5.21), arc to be cvaluated in the computational space. Fig. 5.16b.
Once the flowfield variables are obtained at the grid points in this computa-
tional space, then the results can be directly carried to the corresponding
¢grid points in the physical space, Fig. 5.16a. Note that, whercas thec compu-
tational space is fixed, independent of time [by virtue of the transformation,
Lig. (5.17)], the shock-layer thickness in the physical space is varying with
time because the shock wave is moving, constantly changing the local
shock-detachment distance, 8. This means that the grid points in the physi-
cal space are moving. Only in the steady-state, obtained at large times, do
the shock wave and grid network in the physical space become stationary.
The movement of the shock wave, e, the varying shock-layer thickness
with time, is accounted for in Lgs. (5.18) -(5.21) via the term B, which con-
tains the local shock-wave velocity W. In the steady state, W becomes zero.

. For illustration of the caleulation of the flowfield, tet us pick the x compo-

nent of velocity u. All the other flow variables are calculated in an analo-
gous fashion. Consider a given grid point in the computational space,
denoted by (i, j), where i is the point index in the { direction, and j is the
point index in the y direction; i=1,2,...,N, and j =1, 2,.... M, where N
and M are the number of grid points along a given ¢ and y coordinate line
respectively. In Fig. 5.16b, N = 4 and M = 5, for purposes of illustration. At
this grid point, u(t) is the known velocity from the previous time step; we
wish to calculate u(t + Ar) at the next step in time, where At is the time
interval between steps. Calculate u(t + Ar) at grid point (i, j) denoted by
”livAl

M, from ay(r), denoted by 1}, using

1+ At 'y (’)”
wt = () A (5.22)
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where (Cu/cn),,. 1s an average time-dervative of u between ¢ and ¢ + At
This average time derivative is cvaluated by means of a predictor-corrector
philosophy as follows.

. Calculate a value of (u/cn); ; [rom Eq. (5.19), using forward differences for

the spatial derivatives. Thcgc spatial derivatives are known at time 1. (Re-
member that we are trying to caculate the value of v at time ¢ + Ar from a
known flow at time t.) So, from Eq. (5.19),

)t . ut . — it
o —B VLIV A R o VL S S
<ff>w- < AL >+ l"’< Ay >
P ! P:+1 J P!
+ 0. -— 5.23
<f">>i.j< AL 29

. Calculate a predicted value of velocity from the first two terms in a Taylor's

serics
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wot = 7 g t (5.24)

where the bar denotes predicted values. Carry out the same process itemized
in steps 6 8§ to obtain predicted values of the other dependent-flow vari-
ables, namely &', RS and 44", but now using Egs. (5.20), (5.18) and
(5.20) ruspccm/dy.

. As a corrector step. calculate a value of the time derivative by inserting the

predicted quantities obtained in step 8 into Egs. (5.18)-(5.21), but using
rearward spatial derivatives. For example, from Eq. (5.19),
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Calculate the average time derivative which appears in Eq. (5.22) by

ou 1T /ou\! on\ A
ot L ¢ 2
<0T>M 2 [<8‘>f.j i <5’>;,f } (5:20)

from from
Fq.(5.23) Eq. (8.29)

Calculate the final corrected value of 15" from Eq. (5.22) repeated here

0
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12. Repeat steps 7- 11 for a large number of time steps. The variation of u (and
the other flow variables) {rom one time step to the next will initially be
large. Towever, after a sullicient number of steps are taken, 1/ *% > i/, i.e,, a
steady state will be approached in the limit of large times. This steady state is
the desired result; the time-dependent approach is simply a means to that
end.

Before proceeding further, examine steps 6 12 once again; these steps are the
essence of MucCormack’s predictor-corrector method. In this manner you will
begin to appreciate how straightlorward and strikingly simple the method is.
Furthermore, we will have use for this method in subsequent applications in this
book, so make certain that you feel comflortable with the approach. In regard to
the numerical accuracy of this method (something that workers in computa-
tional fAuid dynamics are always sensitive to—see for example, Refl 52), although
first-order forward and rcarward diflerences are used on the predictor and cor-
reetor steps respectively, the combination of the two steps via Eq. (5.25) results
in a second-order accurate technique. Second-order accuracy is usually sufficient
for most applications in computational fluid dynamics, and is certainly suflicient
for the inviscid blunt-body problem being discusscd here.

'n terms of the blunt body problem, slcps 1-12 above outline a solution
procedure for tie interior points in the flow, i.c., for the points in Fig. 5.16 which
are not on any of the four boundarices. The calculauon of the flowfield variables
at the boundary points is especially important, and requires some special atten-
tion. Indeed, in the generat theoretical context of the solution of the Euler equa-
tions, the only way that the governing cquations cun recognize one type of
application from another is through the different boundary conditions imposed
by cach application. Hence, the boundary conditions are a powerful influence in
determining the solution for a given problem, and any numerical solution must
have an appropriate method for properly treating these boundary conditions.
Thus, in the following paragraphs, we will scquentially examine the shock. body,
and downstream and centerline boundary conditions.

In the present discussion, we are treating the shock wave as a dlsconlm—
uity, across which the usual shock-wave relations (sometimes called the
Rankine-Hugoniot relations) hold. Since the shock wave is moving, the flow
velocities in front of and behind the shock which appeur in the shock relations
must be interpreted as veloettics relative to the shock wave itself. (For a discus-
sion of the governing relations for a moving shock wave, see Chap. 7 of Rel. 4.)
For example. in the basic normat shock case, Eq. (2.1) holds for a moving shock
wave as long as M is interpreted as the Mach number of the flow ahead of the
wave relative to the wave. Also, in the present hypersonic blunt-body solution,
the exact oblique shock relations are used, such as Egs. (2.1), (2.3), and (2.16);
since we are working with an “cxact” solution of the blunt-body problem, it
is neither necessary nor appropriate to utilize the limiting, approximate, hyper-
sonic shock expressions developed in Chap. 2. In Ref. 61, the flow properties at
cach of the grid points along the shock (along { = | in Fig, 5.16b) are obtained
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as follows. Consider a given grid point on the shock wave. The flow properties
and wave velocity W(r) at this point are known at time ¢ from the previous time
step. In order to obtain the flow propertics and wave velocity at this grid point
at time 1+ Ar first assume o value for W(r + Ar). Also, set up a localized, one-
dimensionat. unsteady method of characteristics calculation written in a direc-
tion locally perpendicular 1o the shock wave at the given grid point, reaching
buck into the internal part of the shock layer (sec Ref. 61 for details). For the
assumed 1 + Ar). the Rankine-Hugoniat shock relations predict the flow
propertics immediately behind the shock at the given grid point. Alternatively,
the localized one-dimensional method of characteristics method, via the solution
of the appropriate compatibility equation along the normal direction, propa-
gates information from the neighboring internal flow at time ¢ to the shock grid
pomnt at time [ + Ar, Do these two sets of flowfield results at the given shock
grid point agree? H not, assume another value of W(t + Ar), and try again. In
this manner, an iterative process results which, after a number of iterations, will
finally match the Rankine-Hugoniot shock propertics with the properties pre-
dicted from the unsteady. onc-dimensional method of characteristics from the
internal flowficld. When the iteration is complete, then W(r + At) is known, as
well as the Qow properties at the given shock grid point at time 1 + Ar. To
better understand this approach, sce Ref. 61 for an extended discussion of the
idea, as well us for a presentation of the approprate compatibility equation.
We will not claborate any further here, because there is a simpler method of
handling the shock points which. in the author’s experience, works just as well
as the above approach. This simpler method is as follows. Return to Fig. 5.165,
and again consider a given point on the shock boundary. Calculate the flow
propertics at this grid point at time 1 + Ar by employing the internal {low algo-
rithm outlined carlicr in steps 6 11, with one modification. We cannot employ a
forward difference as called for in the predictor step (step 7), because there are
no points to the right of the shock in Fig. 5.165. Hence, at the shock grid points
a rearward difference must be used on both the predictor and corrector steps,
ie.. the forward differences 1n equations such as Eq. (523) must be replaced with
rearward differences. This 1s called @ “one-sided” difference approach. When
step 11 1s finished. the flow properties at the shock grid point are now obtained
at time  + Ar. In particular, the pressure at time t + At, p(r + At), is now ob-
tained. In turn. from this pressure (the pressure immediately behind the shock),
and the hnown free-stream conditions, the vatue of W(r + At) 1s immediately
fixed by the exact oblique shock relations (the Rankine-Hugoniot relations), as
long as., for this part of the caleulation only, we assume the wave angle at the
grid point at time ¢ 4+ At to be the same as the known value at time t. To
understand this more clearly, recall that, from exact oblique shock theory, only
two quantitics are needed to fix the strength of a shock wave. Here, we are using
the caleulated static pressure ratio, p,/p, [where py, = p(t + At) and p, = p,],
and the wave angle ff to define the specific shock wave; from this, the Mach
number of the flow upstream of the shock relative to the shock, M, is directly
obtained from the shock relations. Since the shock wave is moving, M, is not
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the same as the free-strcam Mach number M in Fig, 5.16a. However, knowing
M, and M, , as well as the speed of sound in the free-stream, W is immediately
obtained as W = a (M, — M ). [Here, keep in mind that W is the shock veloc-
ity relative to the laboratory, treated positive when the shock i1s moving to the
right in Fig. 5.16a, and hence the velocity of the flow ahead of the wave relative
to wave is V, — W, as sketched in Fig. 5.17. Thus, the Mach number of the flow
ahead of the wave relative to the wave is M, = (V,, — W)/a,, which in turn
yields the wave velocity W = a (M .. — M ,).] From the value of W(t + Ar) ob-
tained above, the shock wave at the given grid point 18 moved a distance As in
the x direction, where As is based on an average velocity between times ¢ and
i+ At that is, As = S [W(t + Ar) + W()] Ar. This can be taken as the new loca-
tion in physical space (Fig. 5.16¢) of the shock wave at time ¢ + At at the given
grid point, and the value caleulated above for W(r + Ar) is the appropriate
shock velocity at time ¢ + Ar. Vinally, given this value of W(r + Ar). the other
flow propertics at the shock grid point, such as p(t + At), T(t + At), etc,, are
obtained from the Rankine-Ttugoniot shock relations. In short, what we have
done herc is to use the internal flow algorithm (the MacCormack predictor-
corrector method) with one-sided differences to obtain the pressure behind the
shock, and then using this calculated pressure in conjunction with the [ree-
stream properties to uniquely define W(r + Ar) from the shock relations. Once
W(t + At) is known, the other flow variables at the shock grid point are ob-
tained from the exact oblique shock relations. Since, in applying these shock
relations, we assumed that the wave angle f§ was the value at time f, the accur-
acy of this approach can be improved stightly by repeating the shock calcula-
tion, now using an improved f§ based on the predicted new location of the shock
at time ¢ + Atr. This now concludes our discussion of the numerical treatment of
the shock boundary condition.

The boundary condition along the body ({ =0 in Fig. 5.16b) 1s the usual
inviscid flow condition that the velocity must be tangent to the surface, that s,
V-n =0, wherc n is a unit vector normal to the surface. In order to implement

S, - W w
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FIGURE 5.17
Schematic of a moving shock wave.
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this boundary condition within the context of the blunt-body problem, Moretti
and Abbett (Ref. 61) used a local, unsteady, one-dimensional method-of-charac-
teristics approach written in the local normal direction at the body much along
the hnes of their treatment of the shock boundary condition as described carlier
(except now the boundary is stationary—the body is fixed). See Ref. 61 for more
details. Here, we will describe an alternate and simpler treatment at the body
surface which, in the author’s cxperience, works just as well. Consider a given
grid point on the body. Calculate the velocity at this point using the internal
flow algorithm, i.c.. using MacCormack’s technique as outlined in steps 6-11.
Once again, we will have to use one-sided differences, in this case forward differ-
ences on both the predictor and corrector steps. For example, in Eq. (5.25), the
rearward differences have o be replaced with [orward differences. At the end of
" step 11, both the x and y components of velocity u and v will be obtained at
time ¢ + Ar at the given grid point on the body (labeled as point 1 in Fig. 5.18).
These components add vectorally to yield the vector velocity V at point | on the
surface, as sketched in Fig. 5.18. In general, V will not be tangent to the surface,
ie., the boundary condition will be violated, and we have to modify the bound-
ary caleulation to force V to be tangent to the surface. Another way to state this
is to consider the component of V normal to the surface, namely, ¥, in Fig. 5.18:
in general, ¥, will be some finite value obtained by the process in steps 6 11,
and we nced to make ¥, =0 in order to satisfy the body boundary conditions.
To accomplish this. let us send a local, finite, one-dimensional, isentropic cxpan-
sion or compression wave away from the surface at point 1 of suflicient strength
to “cancel” V,. (Sec Chap. 7 of Ref. 4 for a discussion of general, unsteady, finite
wave motion.) Note that al the end of step 11, in addition to the velocity, values
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FIGURE 5.18
Nustration of boundary condition at the wall.
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of pressure, density, cte. at point 1 will also be obtained at time t + At. For
example, fet us designate the resulting pressure at grid point 1 at time t + At by
Poas &8 Obtained from steps 6-11. However, by sending a traveling, finite wave
along n to cancel V,, all the other flow properties at point 1 will be slightly
changed by the traveling wave, i.e., the pressure at point 1 after the wave inter-
action will be denoted by p,..,. Similar definitions hold for T4, Thews Pords Preves
ctc.. at point [. Return now to our imaginary finite wave traveling away from
the surface in Fig. 5.18 In the case shown in Fig. 5.18a where ¥, i1s directed
away from the surface, the finite wave should be an expansion wave because the
mass motion induced by an unsteady cxpansion wave is in the opposite direc-
tion to the propagation of the wave, hence canceling ¥,. After the cxpansion
wave docs its job, the new pressure at point 1, denoted by p,.., 18 less than pgy
because the pressure decreases through an expansion wave. Examining Fig.
5.48b, if V were directed into the surface as shown, and hence ¥, were into the
surface, the finite wave should be a compression wave because the mass motion
induced by an unsteady compression wave is in the same direction as the propa-
gation of the wave, thus canceling V,. After the compression wave does its job,
the new pressure at pomnt 1, p..., 18 greater than pg, because the pressure
increases through a compression wave. To quantify these arguments, recall the
relations for pressure ratio and temperature ratio through an unsteady, isen-
tropic, one-dimensional, finitc wave (sce for cxample, Chap. 7 of Ref. 4). Written
in terms of the standard nomenclature for unsteady waves, we have

. 2D
Pl vt (5.27)
Da 2 y B
T[T <28
T, * 2 \a, 28

where py, a,, and T, are the pressure, speed of sound, and temperature in [ront
ol the propagating wave, 1’ 1s the induced mass motion at an arbitrary point
inside the wave, and p and Tare the corresponding pressure and temperature at
that point. The plus and minus signs correspond to a compression wave and an
expansion wave, respectively; with the plus and minus nomenclature, the veloci-
ty ' is taken as positive in both cases. Applied to our discussion here, Eqgs.
(5.27) and (5.28) are written as

' -1 2yity— 1)
Pacw _ 1y 7= (Ve (5.29)
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where V, is taken as a positive number in both the cases shown in Fig. 5.18,
the plus sign corresponds to Fig. 5.18b, and the minus sign corresponds to Fig.
5.48a. In summary, the flow properties at the body can be calculated from the

and
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internal flow algorithm using one-sided differences, giving pg4. Th4. €tc.: then
the precise flow-tangency condition at the body is enforced by expanding or
compressing the flow through a finite unsteady wave of strength just suflicient to
cancel any finite component of velocity perpendicular to the wall. This yields
slightly modified flow values at the wall, namely p,... T,.,, ctc. In turn, these
are the final values of the flowfield variables at the wall at time 1 + Ay, that is,
Pt + A = poow. T+ Ay =T,,,, ctc. This approach to the wall boundary
condition is an unsteady analog to the familiar “Abbett’s” boundary trcatment
(see Ref. 64) used for steady flows, to be discussed in Sec. 5.5, This completes
our discussion of the numerical treatment of the wall boundary condition,

Returning to Fig. 5.16b. the downstream and centerline grid points (the
top and bottom of the rectangle in Fig. 5.16h) arc casily treated, as follows. At
the downstream boundary. the flow propertics at the boundary grid points are
stimply obtained from lincar extrapolation from the values at the adjacent inter-
nal grid points. This is suflicient as long as the downstrcam boundary 1s taken
far enough downstream to be supersonic all along the boundary; this is an im-
portant consideration, because extrapolation (of any order) is a properly posed
supersonic boundary condition but an mproperly-posed subsonic boundary
condition. Mence, if any of the grid points along the downstream boundary are
subsonic. and extrapolation is used to obtam the flow properties at these points,
numerical instabilities arc usually encountered. In regard to the centerline
boundary condition, for a two-dimensional or axisymmetric flow at zero angle
of attack. the centerline is a line of symmetry. In such a case, the usual sym-
metry conditions are employed, namely, dp/0y = 0T/0y = du/dy = 0. In terms of
our numcrical calculations, these conditions are written as (referring to the no-
menclature in Fig, 5.19)

Pier = Dj-0e T =T Uiy = Ujy

Since the y-component of velocity v changes sign as the centerline is crossed, the
symmetry boundary condition on v is

i+1 = =V
e j+1
a Centerline
T
®j 1

FIGURE 5.19
Grid points above and below a centerline.
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Thesc symmetry conditions are sufficient to form the forward and rearward dif-
ferences at grid points along the centerline, thus allowing the use of the usual
internal flow algorithm to calculate propertics along the centerling, i.e., to alow
the calculation of p;, T, uj, etc.

A final aspect of the time-marching approach is the value of At which
appears in Egs. (5.22) and (5.24). The finite-difference technique discussed in this
section is an cxplicit method, and therefore At is subject to a stability criterion.
{Sce Ref. 52 for an in-depth discussion ol both explicit and implicit finite-differ-
ence methods, and the governing stability considerations; an introductory dis-
cussion of such matters is given in Chaps. 11 and 12 of Ref. 4.) In the present
method, At cannot exceed a certain value in order to mamtain a numecrically
stable solution. The stability criterion on At is

At < min (At,, At) (530
where
A:
A= 8 (5.32)
u+a
A i
A= - (5.33)
v+

Equations (5.31) (5.33) constitute a version of the Courant-Friedrichs-Lewy (or
CFL) criterion which governs the stability of explicit methods dealing with hy-
perbolic equations (Ref. 65). On a physical basis, A is the time it takes @ sound
wave to travel between two adjacent grid pomnts in the x direction, and At, is the
similar time in the p direction. Equation (5.31) states that the allowable time
step in the explicit method 15 less than, or at best equal to, the minimum of these
two times. The CFL criterion was first derived on the basis of linear partial
differential cquations; therefore, for the nonlincar Euler ecquations, Egs.
(5.31) (5.33) arc to be interpreted as a guideline only, and not as a precise con-
dition. Hence, in practice, At is chosen such that

At = K[min (At,, At,)] (5.34)

where K is less than unity, typically on the order of 0.5 to 0.8. A particular value
of K suited to a particular application is usually determined by trial and error.

Let us examine some typical results for hypersonic blunt-body flows ob-
tained by means of the time-marching procedure. Such results are given in Figs.
5.20 5.24 for the flow over a parabolic cylinder at zero angle of attack from Ref.
4 (with the exception of Fig. 5.23, which is for an axisymmetric paraboloid). In
particutar, Figs. 5.20 and 5.21 illustrate the time-marching mechanism. In Fig.
5.20, the unsteady bow shock-wave motion is shown for the case where M, =
4.0; the fixed, parabolic cylinder is shown at the right, and four different shock
shapes and locations are shown, corresponding with four different times during
the calcutation, The shock labeled 0Ar is the assumed shock-wave shape and
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FIGURE 520
Time-marching shock-wave motion, parabolic eylinder. M = 4.

tocation at time t = 0 (part of the assumed initial conditions). The shock labeled
100A¢ is the shock shape and location after executing the above time-marching
technique for 100 time steps. The shock waves for 200, 300, and S000Ar arc also
shown. Note that, at carly times, the shock wave moves rapidly, but after 300
time steps, the wave motion has decreased considerably, and the shock 1s essen-
trally steady: the shock waves for 300, 400, and 500 time steps are virtually the
same. as shown in Fig. 5.20. The result shown at 500Ar is essentially the final,
steady statc shock wave shape and location-~i.c., the desired result. The time-
marching behavior is further illustrated in Fig. 5.21, which gives the time varia-
tion of the pressure at the stagnation point. Note that the pressure changes very
rapidly at carly times during the time-marching procedure, but at large times it
asymptotically approaches the steady state value. Again, emphasis is made that
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FIGURE 5.21
Time-variation of stagnation point pressure, parabolic cylinder. M, = 4.
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FIGURE 5.22
Surface pressure distribution, parabolic cylinder.

we desire a solution to the steady state flowfield, and the time-marching proce-
dure is simply a means to that end. (In carrying out such time-marching sol-
utions, my students {requently generate large amounts of computer printout for
a given case: I sometimes jokingly tell them to tear off the last sheet, keep it,
and throw out the rest, because the last sheet contains the solution to the prob-
fem.) Some steady state results are shown in Figs. 5.22 to 5.24. In Fig. 5.22, the
steady state surface pressure distributions are shown for M, =4 and M, = §.
The “exact” time-marching finite-difference results arc shown as the solid
curves; also, for the sake of comparison, the symbols give the modified
newtonian prediction [from LEq. (3.14)]. Note that, as alrcady discussed in Chap.
3, the newtonian results arc not very accurate for a blunt, two-dimensional
hody: we see in Fig. 5.22 that newtonian results underpredict the exact numeri-
cal results downstream of the immediate nose region. This is not the case for an
axigymmetric body, as shown in Fig. 5.23. Here, the surface pressure distribution

1O \Ql\ a Moddied newtonian

® [omax and Inouye
08 t\

P [{.
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— ! L _
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FIGURE 523
Surface pressure distribution, paraboloid. M, = 4,
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oo

FIGURE 5.24
Shock shapes and sonic lines, parabolic cylinder.

is given for an axisymmetric paraboloid (with the same meridional shape as the
parabolic cylinder shown in Fig. 5.20). The solid curve gives the cxact numerical
results, and the open squares arc from modified newtonman. Here, agreement
between the exact results and newtonian is quite good, again emphasizing that
newtonian theory appears to be more applicable to three-dimensional rather
than two-dimensional bodies. Figure 5.23 is similar to Fig. 3.8, used in Chap. 3
to demonstrate the viability of newtonian theory. However, in Fig. 523, some
additional data 1s shown, namely the results of Lomax and Inouye (Ref. 66),
which were obtained from a numerical, steady-flow inverse blunt-body solution.
These data are shown herc to emphasize a particular advantage of the time-
marching method. To sce this, recall that for v = 1.4 sonic flow on the surface
occurs when p/p, = 0.528; examining Fig. 5.23, we note that the inverse blunt-
body solution is discontinued in the vicinity of the sonic point—a problem en-
countered by all steady-flow blunt-body techniques prior to 1966. In contrast,
the time-marching procedure gives results far downstream of the body sonic
point—indeed, as far as one wants to go downstream. As a final example of the
present technique, Fig. 5.24 shows the steady state shock shapes and sonic lines
for a parabolic cylinder at Mach 4 and 8, obtained by means of the time-march-
g procedure. Note that, as M, increases, the shock wave moves closer to the
body and the sonic peints on both the shock and the body move closer to the
centerline —all standard physical behavior for blunt-body flows. Furthermore,
observe that, as M, increases, the sonic point on the shock moves down faster
than the sonic point on the body, and thus the sonic line actually rotates in a
counterclockwise fashion as the Mach number increases.

Some interesting details on the physical aspects of the sonic line behavior
are given by Hayes and Probstein (Refs. 46 and 60), and are summarized in
Fig. 5.25, taken from thosc references. In Fig. 5.25, qualitative results are
sketched for two cases, namely the flow over a two-dimensional circular cyl-
inder, and the flow over an axisymmetric sphere; although the shapes are the
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same, the behavior of the sonie lines are not. For example, in Fig. 5.25q. the
sonic line is shown for both the cylinder and the sphere at ow supersonic Mach
number. The sonic point on the shock is much higher than on the body, and the
angle made by the sonic line at the body (w, in Fig. 5.25) is acute. For the
cylinder, as the Mach number increases, the sonic points on both the shock and
the body move closer to the centerline, and the sonic line becomes more curved,
as shown in Fig. 5.25h. The sketch shown in Fig. 5.25b pertains to a Mach
number of approximately 2, and greater. For the cylinder, the angle o, always
remains acute, no matter how high the Mach number. (Note that the sonic lines
at the body in Fig. 5.24 for a two-dimensional parabolic cylinder are consistent
with this fact.) Figure 5.25h also pertains to the case of a spherc, but only for the
limited Mach number range approximately between 2 and 3. At higher Mach
numbers, as shown in Fig. 5.25¢ for the sphere, w, becomes obtuse. Note that
Fig. 5.25 also illustrates the limiting characteristics, and how they change with
Mach number. By definition, the hmiting characteristic 1s the locus of points
cach of which has only one point of the sonic line in its zone of action. For
example, in Fig. 5.25, the [low is locally supersonic at cach point downstream of
the sonic line. However, in Fig. 5.25q0, imagine a left-running characteristic linc
(Mach wave) initiated at some point on the body that lies between the sonic line
and the limiting characteristic. This left-running characteristic will propagate up-
ward and to the left, and will intersect that sonic line somewherc between the
body and the shock. When we move downstream to the limiting characteristic
itself, the left-running characteristic will only tntersect the sonic line at the shock
point; only when we move downstream of the limiting characteristic will the teft-
running characteristics no longer intersect the sonic line. The physical implica-
tion of this is that, although the flow region between the sonic line and the
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General sonic line and limiting characteristic behavior as Mach number increases. (From Refs. 46
and 60.)
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limiting characteristic is totally supersonic, disturbances produced in this region
will propagate to the sonic line, and can affect the entire subsonic portion of the
flow. Similar arguments hold for the cases shown in Figs. 5.256 and ¢. This is
why, in Scc. 5.2, repeated warnings were given that the initial data line for a
mecthod of characteristics solution over a blunt-nosed body must be taken
downstream of the limiting characteristic, not just downstream of the sonic line.
An extended, but introductory discussion of limiting characteristics can be found
in Chap. 12 of Ref. 4.

Another interesting physical aspect of hypersonic blunt-body flows is the
location of the stagnation point, and the point of maximum entropy. For a
symmetric body at zero angle of attack, the stagnation streamline and the stag-
nation point arc along the centerline, as sketched in Fig. 5.26a. This streamline
crosses the bow shock at precisely the point where = /2, that is, it crosses a
normal shock. and hence the entropy of the stagnation streamline in the shock
layer is the maximum value. In contrast, consider the asymmetric cases shown in
Figs. 5.26h and ¢; an asymmetric flow can be produced by a nonsymmetric
body. an angle of attack, or both. In these cases, the shape and location of the
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FIGURE 5.26
Stagnation and maximum cntropy streamlines.
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stagnation streamline, and hence of the stagnation point, are not known in ad-
vance; they must be obtained as part of the solution. Moreover, the stagnation
streamline does not pass through the normal portion of the shock wave, and
hence it is not the maximum entropy streamline. The relative locations of the
stagnation streamline and the maximum entropy streamline for two nose-shapes
is shown in Figs. 5.20b and ¢. Note that the stagnation streamline is always
attracted to that portion of the body with maximum curvature, whereas the
maximum cntropy streamline will turn in the direction of decreasing body cur-
vature. Morce details on this matter can be found in Ref. 60.

A further interesting point concerning entropy, and one with particular
consequence to the time-marching procedure, is as follows. Consider the entropy
cquation, Eq. (4.5), repeated below

s Os 0s s
-t —+v—+w =0 (4.5)
ot Ox ay 0z

When applied at a stagnation point, where 1 = v = w = 0, Eq. (4.5) vields
s

=0 (5.35)
ot
ie. at a stagnation point in an unsteady, inviscid flow, the entropy remains
constant, independent of time. Return to Fig. 5.16a, which shows the physical
planc for a symmetric blunt body at zero angle of attack. Consider the stagna-
tion point, which occurs on the centerline. Equation (5.35) dictates that, at the
stagnation point, the initial conditions at time t = 0 for a time-marching solu-
tion cannot be chosen arbitrarily. Indeed, the proper steady state value of en-
tropy must be used, since it will remain constant at the stagnation point
throughout the time-marching procedure. However, this is no problem for the
symmetric case: we know in advance that the steady-state conditions at the
stagnation point are identical to the stagnation conditions behind o normal
shock wave, which are easily calculated from the normal shock relations. There-
fore, the proper initial conditions at time t = 0 at the stagnation point on the
blunt body in Fig. S.16a are simply the stagnation conditions behind a normal
shock wave. This is demonstrated in Fig. 5.21, where the initial value of p, at
time =0 was indeed chosen as the proper steady state value. After going
through the massive variations shown in Fig. 5.21, p, finally approaches, in the
limit of luarge times, the value it started with at + = 0. For the asymmetric case,
where the location of the stagnation point is not known in advance, chances are
that none of the chosen grid points will correspond to the stagnation point, and
thus the problem is not encountered.

The example chosen in this section to describe and illustrate the time-
marching solution of hypersonic blunt-body flow was a two-dimensional body
at zero angle of attack. This was done for simplicity, as well as to underscore the
basic ideas and philosophy of the method without cluttering our discussion with
tedious details. The extension to three-dimensional flows is straightforward,
although the amount of detail and tedious computation increases by almost an
order of magnitude. Among the first extension of the time-marching idea to
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FIGURE 5.27
Coordinate system for space-shutte calculations. (From Ref. 68.)

FIGURE 5.28
Calculated 3-dimensional shock-wave shape on a shattle-like configuration. (From Weilmuenster,
Ref. 68.)
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blunt bodies at angle of attack was the work of Moretti and Bleich (Ref. 67).
Perhaps the best modern example of a three-dimensional, inviscid, blunt-body
calculation is the work of Weilmuenster (Ref. 68), who solved the flowfield over
a space-shuttle-like vehicle at large angle of attack. Weilmuenster utilized the
explicit MacCormack predictor-corrector scheme, just as we have described
here, except extended to three-dimensional flow. The governing three-dimen-
sional Fuler equations [Egs. (4.1) (4.5)] were solved in a time-marching fashion,
just as outlined ecarlier in this section. The three-dimensional shock wave was
treated as a discontinuity, and moved in space during the time-marching pro-
cedure. In the physical space, a spherical coordinate system was used in the
blunt-nose region of the body, matched to a cylindrical coordinate system for
the remainder of the flowficld. The physical grid is presented in Fig. 5.27, which
shows both the symmetry plane and the cross-flow plane. This physical plane
was transformed to a three-dimensional rectangular box, analagous to the trans-
formation shown in Fig. 5.16, for the finite-difference calculations, along with the
appropriate transformed cquations. A total of 84,825 grid points were used in
the catculation, which was carried out on a CDC Cyber 203 supercomputer. As
a sample of the results, Fig. 528 illustrates the final, steady state shock wave
at M, = 1625 at an angle of attack of 39.8°. Figure 5.29 gives the centerline

207 -

9100
9453
9465
9469
9472
9482
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FIGURE 5.29

Caleulated pressare distribution on the space-shuttle windward centerling; M, = 16.25, o = 39.8°;
comparison with flight data. (From Ref. 68.)
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pressure distribution over the bottom surface for the same flight conditions. In
Fig. 5.29. the solid and dashed lines are calculations for ; = 1.4 and 1.2 respec-
tively: the symbols are flight test data from the space shuttle itself. Excellent
agreement is obtained. (Note that the pressure distribution s relatively insensi-
tive to changes in =) These results are presented here as the epitome of time-
marching solutions to inviscid, hypersonic blunt body flows. and they represent
the current state of the art at the time of writing this book.

On this note. we conclude our discussion of “exact™ solutions to hyper-
sonic blunt body flows. The time-marching solutions discussed here represent a
substantial milestone in the progress of acrodynamic theory, not only for hyper-
sonics. but for the whole spectrum of aerodynamics.

54 CORRELATIONS FOR HYPERSONIC
SHOCK-WAVE SHAPES

As a corollary to our discussion on exact solutions of the hypersonic blunt-body
problem in Sce. 5.3, in the present section we provide some simple engineering
correlations for blunt-body shock-wave shapes. Such correlations are quite use-
ful for rapid engineering analysis of blunt-body aerodynamic properties. Here,
we present the results of Billig (Ref. 69), which are based on experimental data.
The correlations hold for sphere-cone and circular cylinder-wedge bodies, and
assume a hyperbolic shock shape given by the equation:

2 1an? B\ 12
x=R+ 35— R, cot? /j’{<l + ylan” ﬁ) - 1} (5.36)

The nomenclature in Eq. (5.36) is illustrated in Fig. 5.30; R is the radivs of the
nose, R_is the radius of curvature of the shock wave at the vertex of the hyper-
bola, § 15 the shock detachment distance, x and p are cartesian coordinates, and
f is the angle of the shock wave in the limit of an infinite distance away from
the nose. If the body downstream of the blunt nose is a cone of angle 0., then f§
is the wave angle for an attached shock wave on a sharp conc of angle 0,.
Similarly. if the body downstream of the nose is a wedge of angle 0, then £ 1s the
wave angle for an attached shock wave on a sharp wedge of angle 8. If, in the
axisymmetric case, the downstream body is a cylinder (aligned with the flow) or
if, in the two-dimensional case, the downstream body is a flat slab (where in
both cases the downstream body surface is parallel to the free stream), then ff is
a Mach wave. In Eq. (5.36), the values of é and R, are correlated from experi-
mental data as:

5 (0443 exp [3.24/M3 T sphere-cone (537)
R~ 10386 c¢exp [4.67/M2]:  cylinder-wedge -
and
R, (143 exp [0.54/(M, — 1) ] sphere-cone (5.38)
R~ 1386exp [1.8/(M, — 1)*7%];  cylinder-wedge '

In Eqs. (5.37) and (5.38), M, is the frec-stream Mach number.
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“IGURE 5.30
Nomenclature for shock-wave shape correlations.

In Rel 70, Billig’s correlations are compared with numerical results ob-
ained by means of the exact, time-marching method described in Sec. 5.3. The
somparison is shown in Figs. 5.31 and 5.32, obtained from Ref. 70. (The details
Of the numerical calculations are given in Ref. 71.) Figure 531 gives steady state
shock-wave shapes at Mach 4 and 8 for a sphere cone. The solid lines are the
:xact time-marching results, and the open symbols are from Billig’s correlation;
:xeellent agreement is obtained. Figure 5.32 gives the shock-wave shape for a
cylinder-wedge at Mach 8; the solid curves are shock shapes obtained at various
time steps by means of the time-marching method, with the steady state shock
wave identified by 300 500Ar. Billig’s correlation is given by the open circles;
again, excellent agreement is obtained for the steady-state shock shape. From
the comparisons shown in Figs. 531 and 5.32, we conclude that the shock corre-
lations given by Egs. (5.36)-(5.38) arc quite accurate.

As a parenthetical comment, Egs. (5.36)-(5.38) are very useful for con-
strueting initial conditions for a time-marching numerical bhint-body solution.
Suggestions for constructing the initial conditions are as follows:

1. Assume a shock-wave shape and location as given by Eqs. (5.36)- (5.38). and
assume that the wave velocity W= 0 at all grid points is initially zero.

2. The initial Aow conditions at the shock grid points (see Fig. 5.16) are then
obtained from the exact oblique shock equations.
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e M. o= 41Corrclulion of Billig (Ref. 69)
a M, =28
Exact numerical solution (Rel. 71)
=14
Y
1.0
=20
FIGURE 5.3%

Steady state shock-wave shapes for a sphere-cone.

3. Assumc ¢ newtonian pressure distribution along the body.

4. Interpolate between the body and the shock wave to obtain pressures at the
internal grid points.

5. Assume a lincar velocity variation along the body surface, starting with zero
at the stagnation point, and assigning a sharp cone value, wedge value, or
free-stream value (whichever makes the most sense for the given body) at the
last downstream body point.

6. Interpolate between the body and the shock wave to obtain velocitics at the
internal grid points.

7. Obtain the temperature at cach point from the adiabatic relation

V2 | &

T+ =CT. + 7" (5.39)
where T, and V, arc known free-stream values. [Note that Eq. (5.39), which
states that the total enthalpy is constant throughout the flowfield, is only
valid for a sready flow. Tt cannot be used as part of the unsteady, time-march-
ing procedure. However, here we are discussing the construction of initial
conditions, which are somewhat arbitrary in the first place.]

8. Obtain the density at cach grid point from the equation of state, p = pRT.

Although in theory the initial conditions can be purely arbitrary, in practice it is
hetpful that they be somewhat near the proper steady state solution, because in
such a case: (1) the number of time steps required to obtain the steady state is
less, hence reducing the required computer time, and (2) the stability behavior of
the numerical solution will be enhanced.
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r e Correlation of Billig (Ref. 69)
— Exact numerical solution tRef. 71)

M, =8y=14
20041 L lmom lOA/
.

300-500A¢ /

FIGURE 532
Transient and steady state shock-wive shapes for a cylinder-wedge. (From Ref. 70.)

55 MODERN COMPUTATIONAL HYPERSONICS:
ADDITIONAL SOLUTIONS OF THE EULER EQUATIONS

In the present chapter, we are dealing with exact solutions of hypersonic inviscid
flows. Although not intentional, the presentation in this chapter has been chro-
nological, starting with the classical method of characteristies (dating from 1928
in terms of its application to supersonic {low), and then discussing the time-
marching technique, applied with much success to the hypersonic blunt-body
problem in 1966. In the present section, we continue this chronological develop-
ment by presenting a space-marching finite-difference procedure for the solution
of steady hypersonic flows—a procedure that has been widely applied since the
carly 1970s. This space-marching finite-difference method applies only to flow-
ficlds which are totally supersonic or hypersonic (for example, it cannot be used
for the mixed subsonic-supersonic flow in the blunt-nose region); in this fashion,
it is analogous to the method of characteristics. But the analogy ends there,
beeause the finite-difference method is usually easier to set up and apply than
the characteristics method (this is especially true for three-dimensional flows),
and is just as accurate. For this reason, downstream-marching finite-difference
solutions today have all but supplanted the method of characteristics for solu-
tions of purcly supersonic and hypersonic inviscid lowfields. However, please
keep in mind that all the approaches discussed in this chapter arc used today, to
some degree or more, for the solution of hypersonic inviscid flows, and therefore
represent the modern world of hypersonics.
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To introduce the general 1dea of the downstream-marching procedure, con-
sider the two-dimensional or axisymmetric steady flow over a sharp-nosed body,
as sketched in Fig. 5.33a. The gencral governing Euler cquations are given by
Egs. (4.1)-(4.5). Writing these equations in a form suitable for two-dimensional
or axisymmetric steady flow, we have:

) Npv j
Continnity Ay + (8—) +J£}—V =0 (5.40)
0x dy v
cu 0 0
X momentunt pu —-+ pv a_ 7 (541)
ox oy x
dv 0 0
y momentiom pu——+ pv ;B =P (5.42)
0x Jy dy

Physical plane

() *
n - .
Computational plane
e — Shock wave
}Aq
= | —— Body 3
=1 - S
A¢
b

FIGURE 533
Physical and computational planes.
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vhere j== 0 or I for two-dimensional or axisymmetric flow, respectively. Since
he lowficld is steady and adiabatic, the total enthalpy is constant; therefore, the

wartial differential energy equation [in the form of Eq. (4.5) or (4.6)] can be
eplaced by the algebraic relation

p/z 2
I+ 5, = h, + —2(’” = hq 5.43)

shere g is the known total enthalpy. For a calorically perfect gas,

wR "
e ST (1)
y—1 y—1\p

lence, . (5.43) can be written as

~ 2 2
()

quations (5.40) (5.42) and (5.44) constitute four equations with four unknowns,
amely p, p, i, and r. Let us write these equations in a slightly different form as
sllows. Multiplying Eq. (5.40) by 1, and adding the result to Eq. (5.41), we have

Mpu 3 0 0 i puv é
u ‘ ([) + pu o +u (—'((w) v o +mlf—L— -
0x dy dy y x
T
Apu®y  Hpuv) jpuv Cp
—_—— —— 4 = — =
dy Ay y 0x
T
0 N I puv jpup
(p + puy + (PR TP g (5.45)
0x dy y

similarly, multiplying Eq. (5.40) by p, and adding the result to Eq. (5.42), we
ibtain

clpury ¢

~ LI

X (25}

b+ o+ =0 (5.46)
. ,

xamine [gs. (5.40), (5.45) and (5.46) closcly; they can be written in the general
orm

¢l or

L iHn=o0 (5.47)

vhere I, I/, and I arc the column vectors

qu ‘ po ‘ A po

E=qp+pu? I'={ puv = /. pur
7

lpm‘ J P+ puz[ Y pv?
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Equation (5.47) with the quantitics for E, F, and H as given above, is a form of
the Euler cquation called the “strong-conservation form.” Various classifications
of the governing cquations have grown out of the computational fluid dynamics
literature in recent vears. Depending on the manner in which the equations are
written. they can be classified as nonconservation form, weak-conservation form,
or strong conservation form. The distinction between these forms is described in
Ref. 52, and is discussed in detail in Ref. 72. Since the emphasis in the present
chapter is hypersonic aerodynamics and not the details of computational fluid
dynamics. no further elaboration will be given here. Let us simply state that for
the application discussed here, involving the hypersonic flow over a body with a
distinct shock wavce treated as a discontinuity, the particular form of the Euler
equations used is not important. We have just chosen to express the governing
equations in strong conservation form [Eq. 5.47)] to illustrate that such a form
is used in some analyses. For the purposes of this section, we could just as wetl
usc the form of the equations expressed by Eqgs. (5.40)-(5.42), where Eq. (5.40) is
in conservation form, but Eqs. (5.41) and (5.42) are in nonconservation form.
There are instances, however, where the form of the equations used for a partic-
ular computation is important; this will be discussed at the end of the present
section.

Continuing with the Euler equations in the form of Eq. (5.47), we wish to
calculate the hypersonic flow between the body and thie shock wave, as sketched
in Fig. 5.33a. where the shape and location of the shock wave are also obtained
as part of the solution. Since the grid in Fig. 5.33 is curvilinear, a transformation
to a rectangular grid in the computational plane is necessary. This can be
accomplished by the following transformation:

E=x (5.48a)

(5.48)

where J is the local shock-layer thickness é = s — b, 5 is the local ordinate of the
shock s = s(x). b is the local ordinate of the body b = b(x). Equations (5.48q)
and (5.48h) transform the curvilinear grid in the physical plane (Fig. 5.33¢) to
the rectangular grid in the computational plane (Fig. 5.33b). Here, n = 0 is the
body, and 5 = 1 is the shock wave. The derivative transformation can be ob-
tained from the chain rule of differentiation as follows:

0 _(ON(OE\, (a)\(n
F <ag> <ﬁ\> * <ari> <E}x> (5.494)
O _ (N[N (2N
= ()E) (w)(af) (450)
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where, from Eqs. (5.48a) and (5.48h)

d

¢ _ g

- 1 =0

ox oy

on  d(—dbjdx)+ (y—b)dé/dx 1/ d5 db
ax 82 T\ Tax T dx
o

dy 8

Substituting the above results inte Egs. (5.49a) and (5.49h), we have the follow-
ing derivative transformation:

) d 1/ dé db\/ o
92 LA dby [ 5.50
ox et <’7 dx clx> <an> (5300

¢ /0
o= ol oA (5.50b)
cy A\ dy

Using Egs. (5.50a) and (5.50h), the transformed version of Eq. (5.47) is
o

oc T\ Tax  dx

1 < ds (1I)> ol 10F

s oy

Writing the above cquation with the & derivative on the left, and the n deriva-
tives on the right, we have

oF [/ d5 db\OE 10F
Y i R 5.51
o 5 <’7 dx (lx> 5oy (>:31)

Equation (5.51) is reminiscent of Egs. (5.18)-(5.21) used for the time-
marching solution of the blunt-body problem; in Egs. (5.18)-(5.21) the time de-
rivatives arc on the left sides of the equations, and all the spatial derivatives are
on the night sides. However, in the case of Eq. (5.51), the ¢ derivative is on the
left, and the » derivatives are on the right. This suggests a marching procedure
in steps of &, that is, a spatial marching procedure in the downstream dircction.
Indeed, MacCormack’s predictor-corrector method, used for the time-marching
solutions in Sec. 5.3, can also be used here for the spatial marching. Such a
downstream-marching approach is mathematically valid, because, for a super-
sonic or hypersonic inviscid flow, Eq. (5.47) and, hence, the transformed version
Eq. (5.51), is a hyperbolic partial differential equation. Hence, starting with an
initial data line at some ¢ station, the downstream marching procedure is math-
ematically well posed.



HYPFRSONIC INVISCID FLOWFIFLDS: EXACT METHODS 197

In light of the above, the following is an outline ol the application of Mac-
Cormack’s method to the solution of the flowfield at the internal grid points as
shown in Fig. 5.33:

1. Begin with an initial data line at some value of &, say &,. For a pointed body,
the properties atong this initial data line can be obtained from exact wedge
flow (for a two-dimensional body) or from exact cone flow (for an axisym-
metric body). For a blunt-nosed body. the initial data line is obtained from a
blunt-body solution, such as described in Scc. 5.3. The above comiments
about the generation of data for an initial data line arc exactly the same as
made in conjunction with the method of characteristics, which also required
an initial data line (recall Sec. 5.2). In short, referring to Iig. 5.335b, all proper-
tics arc considered known along the initial data line, & = ¢&,.

2. Knowing properties along ¢ = &, (or any other line of constant &), the flow
properties at the next downstream location & + A¢, can be found from

Eivr = E  + <(F> AE (5.52)

1T oF e G s
where F,,, , is the column vector of properties, pu, p + pu?, and pup at grid
point (i + 1. /). and the value of (CE/3E),,, is obtained from MacCormack’s
predictor-corrector method, as described below. In other words, the notation
in Eq. (5.52) represents three individual equations, one each for the flow
quantities, pu. p+ pu’, and pur. Note here that the unknowns are not
directly p. p, 1, and ¢ (called the “primitive variables™), but rather the “flux”
quantitics piu. p + pu’, and pur. The process described here will produce
numerical values for pu, p + pu?, and puv at the given grid point; in turn, the
primitive variables (p, p, u, and v) at the grid point can be extracted from
these numbers and from Eq. (5.44) by simultaneous solution of the algebraic
equations

pu = ¢,
p+put=c,
puD = C4

2 2
Y p u+v

£ — =}

‘v—l(p>+ 2 °

where ¢, ¢,, and ¢, are the known values from the computation at the grid
point. and 14 is the known total enthalpy.

3. The first step in obtaining (PE/8E),,. which appears in Eq. (5.52) is the pre-
dictor step of MacCormack. Therefore, calculate a predicted value of E at
grid point (i + 1,j) denoted by E ., ;, from

_ 0E
For,=E + (5—€> A (5.53)
L
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where £, ; is the known value at the given £, and E,, | | is the predicted value
at &+ Al In Eq. (5.53), (CE/0¢),; comes from Eq. (5.51), where the right-
hand side contains only known values at & and where the derivatives are

obtained from forward diflerences. Le..

O\ _ (A6 b\ (B Ey
= f. . — } —_—— - L
i R Pax ~ dx i An

VF e — Fi
- . " 5.54
‘)ij< An ( )

Knowing F,,, ; from Eq. (5.53), predicted values of the primitive flow vari-
ables, g, p, @, and 7 can be obtained (as described in step 2), which in turn
yields predicted values for F and H, namely F;,, ;and H,,, ;.

. On the corrector step, insert the predicted quantities into Eq. (5.51), using
rearward diflerences

ck i7 ! dodb Ei+1,j'*E.’+1,j—1
. :]H'l,if‘\; 'II"RI e
SJivt, Qi+ dxdx Jivy n
. (Fffui F!',”Jf,‘> (5.55)
Oiv1 Ay

. Obtain the average derivative which appears in Eq. (5.52) by

N 1[[oF . OE 556
0E Joe  20N0E )0 N0 )k 529

obtained from  obtained from
Eq. (5.54) Eq. (5.55)

L

6. Calculate the final, corrected value of L, ; from Eq. (5.52), repeated’ bclow.
i CE
By =E;+ py AL (5.52)
06 Jave

Evaluation of Fq. (5.52) via steps 3-6 at each of the { + [ grid points for the
jth column results in the complete determination of the internal part of the
flowficld at & + A The entire procedure (steps 2-6) is then repeated in order
to progressively march downstream from the initial data line.

The boundary condition at the shock wave is handled in an analogous
fashion as described in Sec. 5.3, except now the flow is steady, i.e, there is no
moving shock wave. In this respect, the application of the shock boundary con-
dition is simpler. For the present downstream-marching procedure, the flow
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properties at the shock grid points (the upper boundary in Fig. 5.33b) as welt as
the shock wave angle can be obtained as follows:

N

. Consider the shock grid points labeled 1 and 2 in Fig. 5.34. We wish to

calculate the flow properties and wave angle 8 at point 2. The flow conditions
and wave angle at point 1 have already been obtained from the previous
downstream-marching step. Initially calculate the flow properties at point 2
using the internal flow algorithm as outlined in the previous steps 2-6, except
using one-sided differences. i.c., use rcarward differences in both Egs. (5.54)
and (5.55).

. Among the flow propertics obtained in the previous step is the pressure at

point 2, p,. This pressure, along with the free-strcam pressure and Mach
number, provide two known quantities about the shock at point 2, namely
pa/p, and M, . Recall that the strength of an oblique shock wave (for a
calorically perfect gas) is uniquely defined by two quantities, such as the two
above. Hence, the oblique shock wave, including the wave angle f§,, is now
determined at point 2.

. Although all the flow properties at point 2 were originally calculated from the

internal flow algorithm as stated in step I, our main interest was in the pres-
surc in order to establish the strength of the shock wave, as described in step
2. Now reset the values of p,, T,, u,, and V, at point 2 to be equal to the
proper valucs behind the calculated oblique shock wave, as determined by the
exact oblique shock relations. This now finalizes the flowfield properties at
the shock grid point.

. Construct the shock-wave shape and location at point 2 by drawing a

straight linc from point 1 with the angle ¥(8, + £,).

M, Z/Jﬁl
—————

) __1./f‘_

> L

e
//

v

FIGURE 5.34
Shock boundary for the downstream-marching procedure.
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The boundary condition on the body is also handled in an analogous fash-

ion as treated in Sec. 5.3, except now, because the flow is steady, an ordinary
steady Prandtl-Mceyer cxpansion or compression is used at the surface. For the
present downstream-marching procedure, the flow properties at the body grid
points (the lower boundary in Fig. 5.33b) can be obtained as follows:

1.

Consider the body grid points labeled | and 2 in Fig. 5.35. All properties at
point | are known from the previous calculation, and in the downstream-
marching scquence we wish to calculate the properties at point 2. Initially
caleulate these properties using the internal flow algorithm at point 2, except
using one-sided differences, i.c., use forward differences in both Egs. (5.54)
and (5.55).

The values of 1 and v at point 2 obtained from the above step will, in general,
result in a velocity which is not tangent to the surface. This velocity 1s de-
noted by V. shown in Fig. 5.35 making an angle § with the tangent to the
surface at point 2. In order to satisly the flow tangency condition, this ve-
locity vector must be “rotated” through the angle 0, such that the resulting
velocity, denoted by ¥, in Fig. 5.35, is tangent to the surface. This “rota-
tion” is accomplished by a Prandtl-Meyer expansion through the angle 0.
The flowficld values at point 2 obtained from step | above are denoted as
“old™ values, paas Poas Woas Ugas Cte. These are assumed to represent the
flowfield upstrcam of the local Prandtl-Meyer expansion. After cxpansion
through the angle 0, the flowfield calculated downstream of the Prandtl-
Mecyer expansion (using the Prandtl-Meyer function and the isentropic flow
relations- - see, for example, Refs. 4 and 5) are denoted as poows Prews Upews
Dyews CLC. These “new™ values are now assigned as the final flowfield values at
point 2, satisfying the flow tangency condition. The treatment of the wall
boundary condition described here was first suggested by Abbett (Rell 64),
and therelore is frequently called “Abbett’s method™ (sec also Chap. {1 of
Ref. 4).

FIGURE 535
Body boundary (or the downstream-marching procedure.
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FIGURE 536
Shock-wave and fimte-difference grid for a downstream-marching solution. (Conrtesy of Stephen
Corda, Untversity of Marviand))

Since the downstream marching technique described here is an explicit,
finite-diflerence method, it must satisfy the Courant-Friedrichs-Lewy stability
criterion applicd to steady flow. This criterion is applied in the physical plane
shown In Fig. 5.33a. In essence, it states the following. Consider grid points (i, ),
(i.j+ D). and (i, — 1), located at a given x station. The next neighboring point
downstream is point (7 + 1. j) as shown in Fig. 533a. The spacing between
points, (i.j) and (i + 1.j) is denoted by Ax. The CFL criterion states that Ax
must be small cnough such that point (7 + 1, ) falls upstream of the left-running
characteristic (left-running Mach line) through point (i,j — 1), and upstream of
the right-running characteristic through point (i, j + 1). On a quantitative basis,
this criterion is given by

Ay

Ax < - e
© S tan (0 + W)l

where 0 and g are the streamline direction and Mach angle respectively at cither
point (i.j — 1) or (i,j + 1). See Rel. 4 for more details.

This completes our description of the downstream-marching finite-diflfer-
ence mcthod. Some results of this mcthod, applied to an axisymmetric three-
quarters power-law body, are shown in Figs. 536 and 5.37. In Fig. 5.36, the
given body shape, the calculated shock-wave shape, and the grid in the physical
planc arc shown for a case at Mach 5. Pressure coefficient distributions as a
function of the downstream distance x are shown in Fig. 537 for M = S, 10,
and 15. Note that little difference exists between these results—another demon-
stration of the Mach number independence principle.

The above description and results are for a two-dimensional or axisymmet-
ric body. For such applications, the method of characteristics (Sec. 5.2) and the
downstream-marching finite-difference method (decribed in the present section)
are competing techniques. The choice is up to the user as to which technique is
emploved. However, the choice most often made today is the finite-difference
approach, duc primarily to its relative simplicity. This is particularly true in the
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AGURLE, 537
ressure distributions obtained for the body shown in Fig. 5.36. (Calculations made by Stephen
‘orda, University of Muarviand.)

sase of three-dimensional flow, where the method of characteristics becomes
cery tedious, and where the finite-difference method is still, relatively speaking,
traightforward.

One of the first three-dimensional, downstream-marching, inviscid hyper-
,onic flow calculations was carried out by Kutler et al. (Ref. 73). Here, the flow
wer a space-shuttle-like vehicle is calculated at Mach 7.4. This work used the
sylindrical coordinate system illustrated in Fig. 5.38, where r, ¢, and z arc the
1sual cylindrical coordinates. The axis of the body is taken along the z axis,
which is at an angle of attack o to the frec-stream. The flowfield in the initial
fata planc is obtained from an independent blunt-body calculation, which today
s almost always a time-marching calculation such as described in Sec. 5.3. Start-
ng from the initial data plane, the finite-difference calculations are marched
Jownstream in the z direction, using the same type of philosophy described
sarlier in the present section. Consult Ref. 73 for details.

In Iig. 5.38, a transformed coordinate s is also displayed, which is defined
i such a manner that s =0 is the body surface and s =1 is the outer flow
boundary of the computation. Note that the outer flow boundary is taken out-
side the shock wave (the outer flow boundary is in the free-stream) and hence
the shock wave itself is handled differently than described carlier. (Blaboration
on this will be made in the next paragraph.) For the finite-difference calcula-
tions, the physical space shown in Fig. 5.38 is transformed to a rectangular box,
much in the sanwe spirit as described earlier for the two-dimensional and axisym-
nictric cases.
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FIGURE 538
Coordinate systems for a three-dimensional body. (From Kutler et al., Ref. 73.)

In Ref 73, the shock wave is calculated differently than described in Sec.
5.3, or to this point in the present section. In these scctions, the shock was
treated as a discontinuity, and only the flowficld between the shock and body
was calculated, using the oblique shock cquations to determine propertics
behind the shock.

Such a philosophy is called shock-fitting

In contrast. in Fig. 5.38, the outer boundary of the coordinate system is outside
the bow shock wave. Here, the shock comes naturally out of the finite-difference
calculations. showing up as a rapid change of flow properties across several grid
points. It is not treated cxplicitly as a discontinuity, and the oblique shock
relations are ot used.

Sucli a philosophy is called shock-capturing.

The relative merits of using a shock-fitting or a shock-capturing approach is a
matter of continued discussion within the computational fluid dynamics com-
munity, and is beyond the scope of the present book. For further informtion on
these matters see Refs. 4 and 72.

Results from the calculations of Kutler et al. are shown in Figs. 5.39-5.43.
In Fig. 5.39, the shock locations are shown in both the planform and side views.
The solid lines are experimental results obtained from Ref 74. The squares
and circles pertain to the downstream-marching calculation; the squares are a
second order accurate calculation using the MacCormack technique described
earlier, and the circles are a related finite-difference formulation, but of third-
order accuracy. (Again, see Refl 73 for details.)) Note the excellent accuracy
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®  Shock-capturing technique (3d order)
0 Shock-capturing technigque (2d order)
txperiment (NASA-ARC, Ref 74)

Wing leading edge shock

Planform view e
(a)

Canopy shock - o
Slip surface- oo™

(hy \

FIGURE 5.3%
Shock Tocations {or shutlle-like configuration obtained from second- and third-order downstream-
marching finite-difference (echnicues. M, = 7.4 « = 0°. (From Ref. 73.)

between calealation and experiment shown in Fig. 5.39. Also, on « physical
basis, note that a shock wave is generated at the nose of the vehicle, and that
this bow shock interacts with a second shock wave generated by the canopy, as
seen in the side view. A slip surface is generated by the interaction of the bow
and canopy shocks, and flows downstream. The computed and experimentally
mcasured slip surfaces agree very well. Also, note from the planview that anoth-
cer shock wave is generated by the wing leading edge, and interacts with the bow
shock wave. Observe that the calculations are not carried further downstream of
the interaction of the bow and wing shocks. This is because a pocket of locally
subsonic flow was encountered in the interaction region. In a steady flow, such a
subsonic reglon is mathematically elliptic, und hence the downstream-marching
solution (which applies to hyperbolic and parabolic regions only) becomes inval-
id (it will usually “blow up™ in the subsonic region). The only way to overcome
this problem is to calculate such subsonic regions by a time-marching proce-
dure, and resumc the downstream-marching technique in the region where the
flow becomes supersonic again. In most modern downstream-marching com-
puter solutions, a provision is made to switch to a time-marching solution for
those local pockets of subsonic flow. (Such a provision was not available for the
calculations of Ref. 73). To further illustrate the three-dimensional nature of
these calculations, Fig. 5.40 shows the calculated development of the shock
shapes and slip surface in the cross-flow plane at various axial locations along
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FIGURE 540

Cross-sectional shock-wave shapes at various streamwise stations of the shuttle-like configuration

shown in Fig, 530 M, =74, 2 =0 . (From Ref. 73.)

the body. In Fige. 541, pressure cocflicient distributions are shown as a function

axial distance.

o for various azimuthal angles around the body, starting with

the bottom of the vehicte (¢ = 0) and concluding with the top of the vehicle
(¢ = 180 ). Note that, for this case, the pressures are higher on the top than on
the bottom of the vehicle: this is because the angle of attack is zero and, noting
the shape of the vehicte as shown in the side view in Fig. 5.39, the top surface at

SCT (3d order)
(),8!f o SCT (2d order) 2

-
= amn-Lo o o—-O—0-0—d-on-o-ood
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIGURE 541

Longitudinal surface-pressure distributions for the 0, 90, and 180° mcridians of the shuttle-like con-

figuration. M, = 74,2 = 0". (F'rom Ref. 73)
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JURE 542
fuce streamline distribution on bottom of shuttle-like configuration. M, = 7.4, o = 0°. (From Ref.

=0 is more of a compression surface than the bottom of the vehicle. Also note
> sharp spike in pressure for ¢ = 180%; this is due to the canopy shock wave
v the top surface. Calculated streamline shapes on the bottom surface are
own in Fig. 542: these are given here just to emphasize the many different
pes of data that can be obtained in such flowfield calculations. Finalty,
¢ calculated and measured shock wave shapes for an angle-of-attack case
= 15.3°) are given in Fig. 5.43. Again, excellent agreement is obtained. Also,
this stage the rcader is cautioned that downstream-marching calculations
ust be limited to low enough angle-of-attack applications so as not to have
rge regions of subsonic flow over the bottom surface. For cases at high angle

—— Experiment
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't —Body for
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FIGURE 543
Shock location for a shultle-like configuration. M, = 7.4, a = (5.30°. (From Ref. 73.)



HYPERSONIC INVISCID FLOWFIELDS: EXACT METHODS 207

XL

FIGURE 5.44
Pressure coeflicient distribulion along the windward centerline on the bottom of the space shutile;

illustration of Mach number independence. Downstream-marching finite-difference calculations by
Maus et al. (Ref. 73)

of attack with large regions of subsonic flow, a time-marching three-dimensional
solution must be employed, such as described in Ref. 68 and illustrated
previousty in Figs. 5.28 and 5.29,

A more recent cxample of downstream-marching, three-dimensional,
hypersonic low solutions is the work of Maus et al. (Rel. 73) wherein inviscid
flowfields over the space shuttle are calculated for both a calorically perfect gas
and an cquilibrium chemically reacting gas. (Chemically reacting flows arc the
subject of Part 11 of this book.) Results from Ref. 75 arc given in Fig. 544,
which shows calculated pressure distributions on the windward centerline of the
space shuttle for angles of attack of 20 and 30 degrees. The calculations are
made at two Mach numbers, M = 8 and 23. Note that, at a given angle of
attack, the C, results for both Mach 8 and 23 are almost identical—yet another
demonstration of the Much number independence principle.

56 SUMMARY, AND COMMENTS
ON THE STATE OF THE ART

There are no general, closed-form, analytical solutions to hypersonic inviscid
flows. There are, however, approximate theoretical solutions based on simplhified
forms of the exact governing cquations, as discussed in Chap. 4. On the other
hand. the exact governing equations (the Euler equations) can be solved numeri-
eally, as demonstrated in the present chapter. Indeed, the power of modern
computational fluid dynamics gives us the ability to obtain “exact” solutions
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of hypersonic inviscid flows for virtually any arbitrary geometry, including
complex, three-dimensional configurations.

However, do not be lulled into a false sense of security by these statements.
Even though computational fluid dynamics gives us the ability to make such
“exact” calculations, the actual carrying out of such calculations 1s frequently
tedious, sometimes difficult, and laced with details which have to be handled
properly in order to obtain accurate and stable solutions. It is not within the
scope of the present book to claborate on computational fluid dynamics. Indeed,
the purpose of the present book is to provide an educational experience for the
reader in the areas of hypersonic and high temperature gas dynamics, and only
enough computational fluid dynamics is discussed to give the reader a flavor
of its application to these areas. Before embarking on serious work on multi-
dimensional hypersonic flow calculations, the reader is encouraged to study the
mtroductory discussions on computational fluid dynamics in Refs. 4 and 72, and
in particular the thorough treatment in Ref. 52.

The reader is also encouraged to examine, and keep current with, the con-
temporary literature in computational fluid dynamics (CFD), and its applica-
tions to hypersonic Nlows. The CFD state-of-the-art is dynamically changing,
particularly at the present time of writing. One example is the current work on
upwind differencing. In the present chapter we have utilized MacCormack’s
finite-different method, which is basically a central difference method. In the
presence of strong shock waves, this method can produce spatial oscillations
both upstream and downstream of the shock. Since hypersonic shock waves are
usually strong, these oscillations can become a very undesirable aspect of some
hypersonic flow calculations. Therelore, mueh current work is being devoted to
the development of “upwind” schemes, t.e., numerical schemes that pay atten-
tion to the domain of dependence of a given grid point in supersonic and hyper-
sonic flow, and which utilize data only from the upstream locations within the
domain of dependence. Such upwind schemes have captured shock waves which
are crisply defined over only one (or at most two) grid points, and with little or
no oscillations. See, for example, Refs. 76-78 for more details. And to become
even more general, we have to mention that finite-difference schemes do not
have a monopoly on hypersonic flowfield calculations; finite-volume and finite-
clement techniques are beginning to find applications in hypersonics as well. It is
not feasible for us to elaborate on such matters here.

fn final perspective, the present chapter makes one important statement:
“Ixact” solutions of the governing equations of hypersonic inviscid flow for
general problems can be obtained if one is willing to accept the methods of
computational fluid dynamics as supplying such solutions. This is an aspect of
the modern hypersonics; indeed, the bulk of this chapter could not have been
written before 1966, We have given examples of “exact” solutions for hypersonic
inviscid flows from:

1. The method of characteristics (a “classical” method).
2. A time-marching finite difference method.
3. A spacc-marching finite difference method.
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The methods and results presented here are intended to provide only the flavor
of such work.

57 A FINAL COMMENT

This brings to an end our discussion of inviscid hypersonic flows, wherein the
purely fluid mechanical effect of high Mach number was illustrated. Part 1 of
this book has concentrated on such flows, both from classical and modern
points of view. In the modern hypersonic aerodynamics of today, it is still useful
to be aware of the classical theory and engineering approaches described in the
earlier sections of Part 1. Also, we must recognize that computational fluid dy-
nanucs will dominate the analysis of modern hypersonic problems. Before pro-
ceding to Part II, return again to the roadmap in Fig. 1.23, and scan over the
items listed under the general heading of inviscid flows, namely the two left-
hand branches. Make certain that you feel comfortable with the material con-
tained within each of the items, and that you apprectate how each item is related
to the general scheme of hypersonic inviscid flows.

PROBLEMS

5.1 Starting with Eqs. (5.13)-(5.16), and using the transformation of both the indepen-
dent and dependent variables as given in Sec. 5.3, derive Egs. (5.18)-(5.21).

5.2. (4) Consider the bow shock wave over a cylinder-wedge in air, where the wedge
half-angle 1s 20°. Draw this body on a piece of graph paper. Using the shock wave
shape correlations given in Sec. 5.4, plot on the same graph the shock shapes on the
cylinder-wedge for M, = 2, 4, 6, 10, 15, 20, and 25. Comment on these results as an
illustration of the Mach number independence principle. (b) On another piece of
graph paper, repeat part (a), except for a 20-degree sphere-cone. (¢) Comment on the
Mach number range at which Mach number independence for the shock wave shape
is reasonably obtained for the two-dimensional shape in part (@) as compared to the
axisymmetric shape in part (b).
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In Part 11, we emphasize the effects of viscosity and thermal conduction in
combination with high Mach numbers, and we will label such flows as
hypersonic viscous flow. The effects of high temperature and diffusion will be
covered in Part 111 In dealing with inviscid hypersonic flow in Part I, we ex-
amined the question: What happens to the fluid dynamics of an inviscid flow
when the Mach number is made very large? In Part 11 we take the next logical
step, and address the question: What happens in a high Mach number flow
when the transport phenomena of viscosity and thermal conduction are includ-
ed? The answer to this question leads to many practical results regarding the
prediction of skin friction and acrodynamic heating in hypersonic flow.
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Two major problems encountered today in aeronautics are the de-
termination of skin friction and skin temperatures of high-speed
aircraft.

E. R. Van Driest, 1950
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6.1 INTRODUCTION

As noted in the above quote by the well-known American aerodynamicist, E. R.
Van Driest, the practical impact of viscous flow on hypersonic vehicles was rec-
ognized as carly as 1950, The matter of aerodynamic heating (hence skin tem-
peraturc) and shear stress (hence skin-friction drag) are extremely important
aspects of hypersonic vehicle design. This has never been more true than in the
modern hypersonic applications of today. For example, consider the concept of
an aerospace plane, designed to take off horizontally from an existing runway,
and then literally blast its way into orbit on the strength of air-breathing pro-
pulsion only. An artist’s sketch of such a concept is shown in Figs. 1.9 and .10,
It will be necessary for such a vchicle to acquire enough kinetic energy within
the seasible atmosphere to “coast™ into low-earth orbit. At such speeds (approxi-
mately Mach 25) within the atmosphere, aerodynamic heating will be extremely
severe. For example, Tauber and Menees (Ref. 80) have made engineering esti-
mates of the acrodynamic heating to an aerospace plane for both ascent and
reentry, and compared these results with the space shuttle reentry. These results
are summarized in the bar chart shown in Fig. 6.1, which gives both the maxi-
mum heat transfer rate (in W/cm?) and the total heat transfer (in kJ/cm?) at the
stagnation point. Here we see the striking result that the acrospace plane reentry
stagnation-point heating is three times larger than the reentry heating of the
space shuttle, and even more striking, the ascent heating of the aerospace plane
is an order of magnitude larger than reentry heating of the space shuttle. Hence,
due to the requirement of the aerospace plane to achieve essentially orbital ve-
locity within the atmosphere, the acrodynamic heating during ascent dominates
its design. Another example, this time emphasizing the role of skin friction drag,
is given in Fig. 6.2, Here, a hypersonic wave rider designed to optimize the lift/
drag ratio is shown, as obtained from Ref. 81. Such wave riders are promising
hypersonic cruise vehicle configurations wherein a high value of lift/drag is nec-
cssary for efficient, long-range cruising conditions. The hypersonic transport
shown in Fig. 1.8 is another example of a hypersonic vehicle designed for rela-
tively high lift/drag. For these types of vehicles, skin friction drag at hypersonic
speeds is a dominant concern because unlike a blunt body (where the drag is
mostly wave drag due to the high pressures behind the strong bow shock wave),
the slender configurations shown in Figs. 1.8 and 6.2 experience considerable
skin friction drag. In Ref. 81, it was observed that the magnitudes of wave drag
and skin-friction drag for the optimized hypersonic wave rider were approxi-
mately the same, never differing by more than a factor of two. The important
point here is that skin-friction drag has a major impact on the design of slender
hiypersonic vehicles.

In light of the above, we repeat that aerodynamic heating and skin friction
are very important aspects of practical hypersonic acrodynamics. In turn, the
understanding and accurate prediction of these aspects is a vital part of the
study of hypersonic viscous flows. In Part Ii, and especially in the present
chapter, we will emphasize these aspects. The introductory discussion in the
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FIGURE 6.1
Comparison between ascent and reentry stagnation point aerodynamic heating for an aerospace

plane, and the reentry stagnation point heating of the space shuttle; calculaiions by Tauber and
Menees. (Ref. 80.)

FIGURE 6.2
Viscous-optimized hypersonic wave rider, by Bowcutt et al. (Ref. 81))
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above paragraph is given simply to motivate our subsequent discussions. As we
progress in our study of hypersonic viscous flow, always keep in mind the above
practical reasons for our interest.

Let us continue to examine the importance of hypersonic viscous flow, but
from a slightly different point of view emphasizing a more purely fluid-dynamic
aspect. Consider Fig. 6.3, which is a velocity-altitude map showing several Lifting
reentry trajectories from orbit, each with different values of the lift parameter
m/C, S (see Scec. 1.4), The shaded portion corresponds to the reentry of the space
shuttle. Superimposed on this velocity-altitude map are lines of constant
Reynolds number per meter, obtained from Rel. 79. Note that the higher alti-
tude portions of the flight trajectories experience combined conditions of high
Mach number and Jow Reynolds number—conditions that accentuate the effects
of hypersonic viscous flows. Indeed, for most of the reentry trajectory, a hyper-
sonic vehicle is going to experience important Reynolds-number effects. Also
nole that a purely arbitrary transition Reynolds number of 10° is assumed, so
that regions of purely laminar flow and of turbulent flow for a 10-meter-long
vehicle are identified on the right of Fig. 6.3. The main thrust of Fig. 6.3 is to
indicate that viscous effects are important in hypersonic flight; such viscous
effects are the subject of Part IL Again, emphasis is made that only the purely
viscous cffects of viscosity and thermal conduction are highlighted in Part II;
the cffects of high temperatures and diffusion, which so frequently accompany
hypersonic viscous flow, are treated in Part II.

In the present chapter, some basic aspects of viscous flows will be dis-
cussed, including the full, governing equations (the Navier-Stokes equations), the
boundary layer equations and how they are affected by hypersonic conditions,

Lifiing reentry from orbit

Rey! 1/m

100+ .
Pure
laminar flow
for Re,, = 10°
I=10m
_t

h, km v
sol - Turbulent flow

5000 Low lift

10 kmy/s

FIGURE 6.3

Velocity-altitude map, with superimposed lines of constant unit Reynolds number. (From Koppen-
wallner, Ref. 79.)
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and important results {rom the boundary layer equations. Throughout Part 11 of
this book, the assumption is made that the reader has been previously intro-
duced to some elementary concepts of viscous flow, at least to the extent
covered in Chaps. 15 and 16 of Refl 5. It is strongly recommended that the
reader review this preliminary material before progressing further.

6.2 GOVERNING EQUATIONS FOR VISCOUS FLOW:
THE NAVIER-STOKES EQUATIONS

In Sec. 4.2, we presented the governing equations for an inviscid flow, namely
the Euler equations [Egs. (4.1)-(4.5)]. These equations are, in reality, a special
form of the general governing equations of fluid dynamics wherein the viscous
terms have been deleted. Another way of stating this is that the Euler equations
are the limiting form of the general viscous flow equations in the limit of infinite
Reynolds number. Indeed, it is frequently convenient to think of inviscid flow as
a flow which results from the Reynolds number approaching infinity.

In the general equations of motion for a fluid flow, viscous effects do not
influence the basic principle of mass conservation, hence the continuity equation
is the same as we presented in Sec. 4.2 [namely, Eq. (4.1)]. However, visualizing
a moving fluid element, the shear and normal viscous stresses on the surface of
the element result in stress terms that appear in both the momentum and energy
equations. Morcover, thermal conduction across the surface of the element pro-
vides an additional mode of energy transfer which appears in the energy equa-
tion. The resulting governing equations, called the Navier-Stokes equations, are
derived (for example) in Chap. 15 of Rel. 5. Therefore, no details will be given
here. These equations are:

)
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where
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The above equations are written for an unsteady, compressible, viscous, three-
dimensional flow in cartesian coordinates. In addition to the familiar symbols
from Chap. 4, we now have the shear stresses 7, t,., etc, and the normal
viscous stresses, t,., 1,,, and 1,,, which are related to velocity gradients in the
flow via Egs. (6.64)-(6.6). Also, jt is the viscosity coefficient, k is the thermal
conductivity, and 1 is the bulk viscosity coefficient (where the usual Stokes
hypothesis is 2 = — 3u). In the energy equation, Bq. (6.5), e is the internal en-
ergy per unit mass, ¢ represents the volumetric heating that might occur, say, by
the absorption or emission of radiation by the gas, and the temperature gradient
terms, (A/0x)[k(0T]dx)], ete. represent energy transfer across a surface due to the
thermal conduction. More details concerning the physical significance of all
these terms can be found in Ref. 5.

A comment on nomenclature is made here. Historically, the term “Navier-
Stokes equations” identified only the momentum equations, Egs. (6.2)-(6.4),
because these were the very equations derived by the Frenchman Claude Louis
M. H. Navier in 1827, and independently by the Englishman George Stokes in
1845, However, in recent times, particularly with the advent of computational
fluid dynamics, most citations in the literature referring to “sotutions of the
Navier-Stokes equations” denote solutions of the complete system of equations,
namely Egs. (6.1)-(6.5). We will follow this modern trend here, and will label the
complete system of equations for viscous flow, Egs. (6.1)—(6.5), as the Navier-
Stokes equations.

Just as in the case of the Euler equations [Eqs. (4.1)-(4.5)], there is no
general analytic solution to the complete Navier-Stokes equations. However, in
analogy with the approximate solutions of the Euler equations given in Chap. 4,
we can simplify the Navier-Stokes equations via an appropriate set of assump-
tions, and obtain approximate viscous flow results. Such a simplification in-
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volves the boundary layer equations, to be discussed in Sec. 6.4. Also, in analogy
with the “exact™ solutions of the Euler equations given in Chap. 5, there are
numerical solutions of the exact Navier-Stokes equations, to be discussed in
Chap. 8.

6.3 SIMILARITY PARAMETERS
AND BOUNDARY CONDITIONS

As a precursor to the boundary layer equations, to be discussed in the next
section, and as a means to highlight the important similarity parameters for a
viscous flow, it is useful to have a nondimensional form of the Navier-Stokes
equations. To reduce the number of operations and terms, without loss of in-
structional value, we will consider a two-dimensional steady flow, and we will
ignore the normal stresses ., and t,,. Let us introduce the [ollowing dimension-
less variables

_ p = u ~ v _ p _ e
= — 0= U= — = e = ——
f P Vm Vw P Po CUTOO
L b3 k
[:‘,l_f X = - Jj::X E:i
oy ¢ c k.

where p., V., P, s k., and T, are reference values (say, for example, free-
stream values) and ¢ is a reference length (say, the chord of an airfoil). In terms
of these dimensionless variables, Egs. (6.1)-(6.5) become (for two-dimensional,
steady flow):

o(piy  A(pr)

o0 (6.7)
__o0a  __on 1 op 1 2 o5 oi
TR e S i 7 it 6.8
PR Y PS5~ T M2 ox T Re, ap[ <0x + ﬂ (6.8)
003 Lop, 10 au Lo ‘ 69)
o spe_ 1 op ou
PaT? v yMZ 35 " Re, 0%| "\ax  ay (6.

2 0 0
pu PR + pﬁ--}—_ =y(y — DM [pﬁﬁ (i? + %) + 556(—_(172 + 172)j|

7 o[ 0T oT O(tw) o(op)
+ PrRe, [&<E$> ﬁy <k M):! = )< ox 0){7>

| 0 @ du +3 __{0b ia
o= o+ )] 5 a3

(6.10)
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The derivation of Egs. (6.7)-(6.10) is left as homework problem 6.1. Note that
- several parameters have emerged in Egs. (6.8)-(6.10), namely:

= c
Ratio of specific heats y = T”

Vd‘
Mach number M, =

aoo

V.

Reynolds number Re = PF;ﬁ?

(c
Prandtl number Pr = ﬁk,"

These four dimensionless parameters are called similarity parameters, and are
very important in determining the nature of a given viscous-flow problem. In-
deed, a formal method for identifying the similarity parameters in any mechani-
cal system is to nondimensionalize the governing equations; the dimensionless
constants which appear in front of the derivative terms are the governing simi-
larity parameters. The significance of flow similarity, and the meaning of the
similarity parameters, is discussed in detail in Chap. 15 of Ref. 5. We will make
only a few bricf comments here, in the way of a reminder. First of all, from our
experience with inviscid flows in Part I, it is no surprise that y and M, carry
over as similarity parameters for viscous flows. Thermodynamic properties, as
reflected through 7y, are important for any high-speed flow problem. A combina-
tion of thermodynamics and flow kinetic energy can be found in M_; indeed, it
can readily be shown (see, for example, Ref. 4) that
R flow kinetic energy
M2« oo S
flow internal encrgy

For the Reynolds number, we have (see, for example, Refl 82)

inertia force
Re o« | -
viscous force
The Prandt! number, introduced via thc energy equation, is an index which is
proportional to the ratio of energy dissipated by friction to the energy trans-
ported by thermal conduction; that is
frictional dissipation
Pr (K » - - T
thermal conduction
In the study of compressible, viscous flow, Pr is just as important as y, Re, or M.
For air at standard conditions, Pr = 0.71. Note that Pr is a property of the gas;
for diffcrent gases, Pr is different. Also, like p, k and ¢, Pr for a nonreacting pas
is a function of temperature only. (For a chemically reacting gas, Pr is also
dependent on the local chemical composition, which in turn depends on the
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local temperature and pressure for an equilibrium flow, and on the history of the
upstream conditions for a nonequilibrium flow; these ideas will be introduced in
Part II).

An important difference between inviscid and viscous flows not seen
explicitly in the Navier-Stokes equations is the wall boundary conditions. In
Part I, we utilized the flow tangency condition at the wall—the usual boundary
condition for an inviscid flow (with no mass transfer through the wall). This
boundary condition changes drastically for a viscous flow. Due to the existence
of friction, the flow can no longer “slip along the wall” at a finite value. Rather,
for a continuum viscous flow, we have the no-slip boundary condition at the
wall, namely, the velocity is zero at the wall.

Wall boundary condition: u=v=20 6.1H

If there is mass transfer at the wall (due to ablation or transpiration cooling, for
example) then Eq. (6.11) is modified as:
=0

=,

Wall boundary condition with mass transfer:

where v, s the specified velocity normal to the surface. In addition, due to
energy transport by thermal conduction, we require an additional boundary
condition at the wall involving internal energy (or more usually temperature). If
the wall is at constant temperature, then the boundary condition is simple:

Constant wall-temperature boundary condition: T=T, (6.12)

w

where T, denotes the specified wall temperature. As is more usually the case, the
wall will not be at constant temperature. If we know a priori the distribution of
temperature along the surface, then Eq. (6.12) is slightly modified as:

Variable wall-temperature boundary condition: T = T, (s) (6.13)

where T, (s) is the specified wall temperature variation as a function of distance
along the surface, s. Unfortunately, in a high speed flow problem, the wall tem-
perature is usually one of the unknowns, and we can not utilize either Eq. (6.12)
or (6.13). Instead, the more general condition on temperature at the wall is given
by Fourier’s law of heat conduction:

oT
Heat transfer wall boundary condition: ¢, = — (7) (6.14)
onJ,

where ¢, is the heat transfer (energy per second per unit area) into or out of the
wall, » is the coordinate normal to the wall, and (07/dn),, is the normal temper-
ature gradient existing in the gas immediately at the wall. In general, the wall
heat transfer (and hence the wall-temperature gradient) are unknowns of the
problem and, therefore in the most general case the wall boundary condition
[Eg. (6.14)] must be matched to a separate heat conduction analysis describing
the heat distribution within the surface material itself, and both the flow prob-
lem and the surface material problem must be solved in a coupled fashion. A
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special case of Eq. (6.14) is the adiabatic wall condition, wherein by definition the
heat transfer to the wall is zero. From Eq. (6.14), we have in this case:

oT
Adiabatic wall condition: <0—> =0 (6.15)
n w

Note that here the boundary condition is not on the wall temperature itself, but
rather on the temperature gradient, namely a specified zero gradient at the wall.
The resulting wall temperature (which comes out as part of the solution) is
delined as the adiabatic wall temperature T,,,, sometimes called the “equilibri-
um” temperature.

Although the choice of an appropriate boundary condition for temperature
(or temperature gradient) at the wall appears somewhat “open-ended” from the
above discussion, the majority of high-speed viscous flow calculations assume
one of the two extremes, i.e., they either treat a uniform, constant temperature
wall [Eq. (6.12)], or an adiabatic wall [Eq. (6.15)]. However, for a detailed and
accurate solution of many practical problems, Eq. (6.14) must be employed
along with a coupled solution of the heat conduction problem in the surface
material itsell. Such detailed, coupled solutions are beyond the scope of this
book.

The temperature boundary condition adds another similarity parameter to
our viscous-llow analysis. In Eq. (6.10), the dimensionless internal energy is de-
fined as e = ¢/¢,T,,. The valuc of ¢ at the wall is &,, which, for a constant tem-
perature wall is a specified constant value. Moreover, for a calorically perfect
gas, ¢ = ¢, T. Hence, at the wall,

[4

= w
O = — o = s = —
(.U 1—:‘1) CUTw Tw

Therelore, to achieve flow similarity in the solution of Eys. (6.7) (6.10), not only
arc p, M, Re,. and Pr similarity parameters, but the wall to {ree-stream tem-
perature ratio, 1,,/T,, is also a similarity parameter.

As a final note in this section, we observe that the nondimensional
Navier-Stokes equations, Egs. (6.7)-(6.10), in the limit of Re — co, reduce to the
nondimensional Euler equations, thus supporting our earlier statement that an
inviscid flow can be thought of as a limiting case of a viscous flow when the
Reynolds number becomes infinite.

64 THE BOUNDARY LAYER EQUATIONS
FOR 11YPERSONIC FLOW

Until the advent of computational fluid dynamics, exact solutions of the com-
plete Navier-Stokes equations for practical problems were virtually nonexistent.
Even today, numerical solutions of these equations (to be discussed later) are
not easy, and generally require a lot of computer power, as well as human re-
sources to generate the computer solutions. Therefore, reasons exist for simpler
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viscous-llow solutions. By a suitable order-of-magnitude reduction of the
Navicr-Stokes cquations, a simpler sct of equations—the boundary laver equo-
tions--can be obtained. The compressible boundary layer equations are the
sume, whether the flow is subsonic, supersonic, or hypersonic (neglecting high-
temperature effects). However, there is one aspect of the standard boundary lay-
er cquations which becomes rather tenuous at hypersonic speeds, and which 1s
not always recognized. For this reason, the following excerpts from Ref. 5 on the
derivation of the boundary layer equations are given below. Please keep in mind
that it is not the purpose of this book to “rehash” basic fluid mechanics, which
is assumed to be part of the reader’s background. However, in the present case
regarding the derivation of the boundary layer equations, the following review
material is important to our subsegiuent comments on hypersonic boundary
layers.

Considering two-dimensional, steady (low, the nondimensionalized form of
the x momentum cquation (one of the Navier-Stokes equations) was given by

Eq. (6.8)
il i 1 ap I ¢ ov o
pii -, = — — =t - == — 6.8
i X e OF yM~, 0% + Re, 07 [ll<ﬁ.\7 * 0)7>] (68)

Let us now reduce Eqg. (6.8) to an approximate form which holds reasonably
well within a boundary layer.

Consider the boundary layer along a flat plate of length ¢. The basic
assumption of boundary layer theory is that a boundary layer is very thin in
comparison with the scale of the body; that is,

d<¢ (6.16)

where 0 1s the boundary layer thickness. Consider the continuity equation for a

steady, two-dimensional flow, which in terms of the nondimensional variables is
given by Eq. (6.7),

Adpiy  pt

L 4

ok 0y 0 7
Because 77 varies from 0 at the wall to 1 at the edge of the boundary layer, let us
say that 11 is of the order of magnitude equal to I, symbolized by 0(1). Similarly,
= 0(1). Also, since x varies from 0 to ¢, x = O(l). However, since y varies from
0 to d, where 6 < ¢, then 7 is of the smaller order of magnitude, denoted by
i =0(5/c). Without loss of generality, we can assume that ¢ is a unit length.
Therefore, y = 0(J). Putting these orders of magnitude in Eq. (6.7), we have

[O(HIoch] | [ohilel
oyt oom =P (6.17)
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Hence, from Eq. (6.17), clearly & must be of an order of magnitude equal to 4,

that is, v = 0(8). Now examine the order of magnitude of the terms i Eq (68).
We have

_d ou op
pu af~0(l) é—_—O(l) 5-»—0(1)

&/ dp o (_di I
(i) =00 “as)=0f~,
(i) -oo 37(755) =)

Hence, the order-of-magnitude equation for Eq. (6.8) can be written as

0(l) + 0(1) = —ﬂ\[()(l)Jr rTle [0(1)+0<1>] (6.18)

Let us now introduce another assumption of boundary-layer theory,
namely, that the Reynolds number is large, indeed large enough such that

(6.19)

Then, Eq. (6.18) becomes

01y + 0(1) = — y'/\lﬁ o(1) + 0(52)[0(1) + 0(;-2)] (6.20)

In 1ig. (6.20). there is one term with an order of magnitude that is much smaller
than the rest, namely, the product 0(52)[0(1)] = 0(3?). This term corresponds to
(1/Re )0/0¥( 83/0%) in Eq. (6.8). Hence, neglect this term in comparison to the
remaining terms in Eq. (6.8). We obtain

i ] i dp 1 0 ot
i apto L e 621
P TPy~ 7 M2 o T Re,, ay( 0,») (6.21)
In terms of dimensional variables, Eq. (6.21) is
du du op 0 du
- _ i g 2
pu o - 4 po 3y ox + 3y <;t Oy) (6.22)

Equation (6.22) is the approximate x-momentum equation which holds for flow
in a thin boundary layer at high Reynolds number.

Consider the y-momentum equation for two-dimensional, steady flow, ob-
tained in terms of the nondimensional variables as Eq. (6.9).

o o0 1 op 1 o[ (o6 di
AN L (N S 7 G 623
P T P 5T T ML a5 T Re, ox [“(af * ay)] (6-23)
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The order of magnitude equation for Eq. (6.23) is

0(8) + 0(0) = — — %+Wﬁ@®+%g] (624)

yM?, 0F

From Eq. (6.24), we see that &p/dy = 0(d) or smaller, assuming that yM2 = 0(1).
Since o is very small, this implies that dp/dy is very small. Therefore, from the y-
momentum equation specialized to a boundary layer, we have

P _, (6.25)

Equation (6.25) is important; it states that at a given x station, the pressure is
constant through the boundary layer in a direction normal to the surface. This
implies that the pressure distribution at the outer edge of the boundary layer is
impressed directly to the surface without change. Hence, throughout the bound-
ary layer, p = p(x) = p,(x), where p,(x) is the pressure distribution at the outer
edge of the boundary layer (determined from inviscid-flow calculations).

The leads to a major point concerning hypersonic boundary layers, and
the reason for reviewing the above order-of-magnitude analysis of the boundary
layer equations. Consider again Eq. (6.24), but now in the case of large hyper-
sonic Mach numbers. In Eq. (6.24), if M2, is very large, then dp/éy does not have
to be small. For example, if M_ were large enough such that 1/yMZ% = 0(5),
then ¢p/cy could be as large as 0(1), and Eq. (6.24) would still be satisfied. Thus,
for verv large hypersonic Mach numbers, the assumption that p is constant in the
normal divection through a boundary layer is not always velid. This aspect of
hypersonic boundary layers is not frequently discussed or widely appreciated,
and hence some emphasis is being made here. Also, it is important to properly
interpret the above statement; it is a fluid dynamic result which states that the
normal pressure gradient through a hypersonic boundary layer need not be
zero. However, this does not preclude the pressure gradient from being zero, or
nearly zero; it is simply saying that, within the conventional boundary layer
assumptions resulting in Eq. (6.24), 0p/dy does not have to be zero. Since the
1950s a large number of hypersonic boundary layer calculations have been made
with the conventional boundary layer assumption that dp/dy = 0, and in many
applications this is justified. However, we should not expect this to always be
the case. Indeed, the question concerning the possible existence of a finite nor-
mal pressure gradient adds more support to carrying out hypersonic viscous-
flow calculations by going beyond the usual boundary layer calculations, and
instead dealing with the entire shock layer as fully viscous from the body to the
shock wave. In such viscous shock-layer analyses, the normal pressure gradient
is calculated as part of the solution to the problem, thus circumventing the un-
certainty as to whether dp/odn is zero or finite. Such viscous shock-layer calcula-
tions will be discussed in Chap. 8.

As a corollary to the above discussion, return to the x momentum equa-
tion, Eq. (6.21), and its order-of-magnitude comparison given by Eq. (6.20). If
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M, is large, then the pressure-gradient term (1/yMZ)(0p/0%) can be small; in
such a case, the hypersonic boundary layer will not be greatly influenced by the
axial pressure gradient dp/0x. This is vaguely analogous to the inviscid-flow re-
sult discussed in Part [, namely that for hypersonic flow over slender bodies,
most of the flow field changes take place in the y direction, and only small
changes take place in the x direction.

Keeping the above considerations in mind, we will proceed in the present
chapter with a discussion of the conventional boundary layer equations, and
results based upon these equations. To round out our presentation of the
boundary layer equations, we must consider the general energy equation given
in nondimensional form for two-dimensional, steady flow by Eq. (6.10). Inserting
> = h — p/p into this equation, subtracting the momentum equation multiplied
by velocity, and performing an order-of-magnitude analysis similar to those
above, we can obtamn the boundary layer energy equation as

oh oh 0 0T op au\?
- Il L - — 6.26
Max TP Oy< (7y>+u0x+“<6y> (6:20
The details are left to you.
In summary, by making the combined assumptions of 6 < ¢ and Re >
1782, the complete Navier-Stokes equations given in Sec. 6.2 can be reduced to

simpler forms which apply to a boundary layer. These boundary-layer equations
are

) 0 d(pv
Continuity: 9, 20 (6.27)
dx Jy
0 0 lp, - @ d
x Momentum: pu o + pv G ey —n c (6.28)
Ox Oy dx  ay\’ dy
op
y Momentum: -~ =0 (6.29)
Jy
oh oh 0/ 0T dp on\?
: & fre = .30
Energy: pu o + pu o= ay <k 0y> +u i + u(@)) (6.30)

Note that, as in the case of the Navier-Stokes equations, the boundary layer
cquations are nonlinear. However, the boundary-layer equations are simpler and
therefore are more readily solved. Also, since p = p(x), the pressure gradient
expressed as Op/dx in Eq. (6.22) is reexpressed as dp,/dx in Egs. (6.28) and (6.30).
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In the above equations, the unknowns are u, v, p and h; p is known from p =
p(x), and u and k are properties of the fluid which vary with temperature. To
complete the system we have for a calorically perfect gas,

p=pRT (6.31)
and
h=c,T (6.32)

Hence, Eqgs. (6.27), (6.28), and (6.30)-(6.32) are five equations for the five un-
knowns, u, v, p, T, and h.
The boundary conditions for the above equations are as lollows:

At the wall: y=0, u=0, v =0, T=T,
0T
or (Lr> =0 (adiabatic wall)
@n w

At the boundary layer edge. y—co, U~ U, T-T,

e

Note that since the boundary layer thickness is not known a priori, the bound-
ary condition at the edge of the boundary layer is given at large y, essentially y
approaching infinity.

The boundary layer equations given above apply to compressible flow;
they are equally applicable to subsonic and supersonic flows with no distinction
made for such cases. They can be (and have been) applied to hypersonic flows.
However, when using Egs. (6.27)-(6.32) for hypersonic flows, keep in mind our
earlier discussion concerning dp/0y. Also, if M, is high enough, viscous dissipa-
tion within the boundary layer creates high temperatures, which in turn causes
chemical reactions within the boundary layer. In such a case, the system of
equations given by Eqs. (6.27)-(6.32) is not totally applicable; diffusion of chem-
ical species and energy changes due to chemical reactions must be included. The
subject of hypersonic chemically reacting boundary layers will be treated in Part
[T1. Nevertheless, the application of Egs. (6.27)-(6.32) to relatively moderate hy-
personic conditions yiclds useful results. Also, many hypersonic wind tunnel
tests are conducted in “cold flows,” flows where the total enthalpy is low enough
to ignore high temperature effects. Hence, there are many hypersonic applica-
tions where the governing boundary layer equations for a calorically perfect gas
in the form of Eqs. (6.27)-(6.32) are appropriate. Thus, we will pursue various
aspects of these equations throughout the remainder of this chapter.

This ends our introductory discussion of the basic aspects of hypersonic
viscous flow. It is instructive at this stage to return to the roadmap given in
Fig. 1.23. We are now located on the second major branch of hypersonic flows,
namely hypersonic viscous flows. We have just finished the item labeled “basic
aspects,” and are now ready to move on to discussions of hypersonic boundary
layer theory. Under this category, our discussions will first cover some aspects of
self-similar boundary layers, and then examine some approaches for nonsimilar
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boundary layers, (What is meant by similar and nonsimilar boundary layers will
be explained in the next section.) The material we will discuss is somewhat class-
ical in nature. It will be, for all practical purposes, a discussion of compressible
boundary layer theory not limited to just hypersonic flow. However, our interest
here is in the application of the results of this classical theory to high Mach
number problems.

6.5 HYPERSONIC BOUNDARY LAYER THEORY:
SELF-SIMILAR SOLUTIONS

Although the title of this section involves the word “hypersonic,” in reality we
will be dealing with compressible boundary layer theory, and the results will
apply to both subsonic and supersonic, as well as hypersonic conditions. As a
reminder, a major aspect that distinguishes hypersonic boundary layer theory
from the subsonic and supersonic cases is the intense viscous dissipation, result-
ing in high temperature, chemically reacting flow. This aspect will be considered
in Part HI. In contrast, in the present section as well as throughout Part I, we
are assuming a calorically perfect gas, ie., we are highlighting only the fluid
dynamic effect of viscosity and thermal conductivity in combination with high
Mach numbers. In this regard, the present section is classical in its scope; the
material discussed here has evolved since the 1940s, when interest in compress-
ible boundary layers began to emerge under the impetus of high speed, subsonic,
and supersonic {light. Furthermore, we will assume some slight familiarity on
the part of the reader, at least to the extent of the material covered in Chap. 15
and 16 in Ref. 5. For an excellent discussion of classical compressible boundary
layer theory, see the book by White (Ref. 83).

The concept of self-similar boundary layers is illustrated in Fig. 64. In
general, the variation of flow properties throughout a two-dimensional bound-
ary layer is a function of both x and y. This is sketched in the physical plane
shown at the left of Fig. 6.4, where two velocity profiles are shown at different x
locations, x, and x,, along the surface. In general, the profiles are different, that
is, u(x, y) # u(x,, y). However, for certain cases under the appropriate indepen-
dent vitiable transformation from (x, y) to (£, 1), the flowficld profiles become
independent of location along the surface. This is sketched at the right of Fig.
6.4, which shows a transformed plane wherein the velocity profile is independent
of the transformed surface distance &; that is, the same velocity profiles exist at
different values of &, say &, and &,. Thus, in the transformed plane, the velocity
profile is given by v = u(n), independent of £ Boundary layers which exhibit this
property are called self-similar boundary layers, and solutions for these bound-
ary layers are called self-similar solutions—the subject of this section. Self-similar
solutions to boundary laycrs have been investigated since the original incom-
pressible flat plate solution obtained by Blasius in 1908; the fact that the flow
may be hypersonic does not preclude the occurrence of self-similar solutions, as
we will see.
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FIGURE 64
Itustration of the concept of self-similarity,

Let us now transform the boundary layer equations, Egs. (6.27)-(6.30)
from physical (x, v) space to a transformed (&, ) space, and examine the possi-
bility of self-similar solutions. The appropriate transformation is based on work
initiated in the 1940s by Illingworth (Ref. 84), Stewartson (Ref. 85), Howarth
(Ref. 86) and Dorodnitsyn (Ref. 87), and put in a more useful form by Levy (Ref.
88) and Lecs (Ref. 89). The transformation is:

&= J Pttt dx (6.33)
0
u, v
n=yfjp® (634)
()]

where p,, 1, and g, are the density, velocity, and_viscosity coefficients, respec-
tively, at the edge of the boundary layer. Since p,, u, and g, are functions of x
only, then & = §(x). The transformation given by Egs. (6.33) and (6.34) has been
identified by various names in the literature, with some inconsistency caused by
the number of researchers contributing to its development (see for example the
names associated with Refs. 84-89). If for no other reason, it seems appropriate
to recognize the chronological first (Ref. 87) and last (Ref. 89) of the references
given, and hence the transformation given by Egs. (6.33) and (6.34) will be called
the Lees-Dorodnitsyn transformation in this book.

Let us now apply the above transformation to the boundary layer equa-
tions, Egs. (6.27)-(6.30). In the process, we will also transform the dependent
variables as well, resulting in a system of partial differential equations describing
the boundary layer flow that look completely different than Egs. (6.27)-(6.30),
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but which are easier to analyze and solve. Although the following transforma-
tions may at first look involved, they are in reality quite straightforward. There
are four basic steps to the transformation process, leading to the final trans-
formed equations; these four steps will be clearly identified below, for the con-
venience of the reader.

STEP L. Transformation of the independent variables.

The independent variable transformation given by Egs. (6.33) and (6.34)
must be couched in terms of derivatives, because terms involving x and y in the
original boundary layer equations, Egs. (6.27)-(6.30), are derivative terms. From
the chain rule of differential calculus, we have

CNEAVES d\ /oy
e (w;) (5) + (a,,> (a) 6.35)
0 _ 0 & [é on
- (?) (w) " (97) (@) o3

From Egs. (16.33) and (6.34), keeping in mind that ¢ = £(x) only, we have

0

L— (6.37a)
0x

?t

%0 (6.37h)
ay

an  u,p

o= i (6.37¢)
yJ2
(As we will soon see, we do not need an explicit expression for dn/dx.) Substitut-

ing Egs. (6.37a)-(6.37¢) into Egs. (6.35) and (6.36), we obtain the following de-
rivative transformations:

2 A 6.38
DX - pt'l[E/LL' Oé + 07x’ ;9’1 ( . )

0 u.p 0
2= el 6.39
dy \/25 on 63

At this stage, it is convenient (but not necessary) to introduce the stream func-
tion ¥ defined, as usual, by

0

(a‘ﬁ = pu (6.400)

0

(7[/, = —pv (6.40b)
X
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In terms of ¢, the x momentum boundary layer equation, Eq. (6.28), becomes

ouw 0w dp, 0 ( ﬂlt)

dyax  oxdy  dx oy dy

(6.41)

Introducing the derivative transformations given by Egs. (6.38) and (6.39) into
Eq. (6.41), we have
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Multiplying Eq. (6.42) by \/2&/u,p we obtain
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This is the end of Step I; Eq. (6.43) represents the boundary layer x-momentum
equation in terms of the transformed independent variables.
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STEP 1I. Transformation of the dependent variables.
Let us define a function of & and n, f(¢, ) such that

u_d_ (6.44)
u, on

where the prime denotes (for the time being) the partial derivative with respect
to n. Recalling that the velocity at the edge of the boundary layer is a func-
tion of x (hence &) only, that is, u, = u,(§), the derivatives of u follow from
Eq. (6.44) as
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where {” denotes (%f/on®).

STEP I11. Identification of [ with y.
The new dependent variable f(&, n), defined by Eq. (6.44) is essentially a
stream function in its own right, and is indeed related to Y as follows. From
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Eq. (6.40a), written in terms of the transformation given in Eq. (6.39) and (6.44),
we have

u,p 0P
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Integrating Eq. {6.47) with respect to 5, we have

W =28 + F(©) (6.48)

where F(&) 1s an arbitrary function of & However, recall from the general prop-
ertics of the stream function that, with no mass injection at the wall, the value of
 at the wall is zero, that is, (&, 0) = 0. In Eq. (6.48) applied at the wall, the
only way to ensure that iy = 0 at each point along the wall is for each term of
Eq. (6.48) to be zero, i.e., both f = 0 and F(&) = 0. Hence, the arbitrary function
F(&) in Eq. (6.48) must be zero, and we have

v =J2f (6.49)

Clearly, from Eq. (6.49), [ is a strcamfunction related to . Finally, from Eq.
(6.49), we have

o
o = /2 5 (6.50)
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STEP 1V. Obtaining the final transformed equation.
Substituting Egs. (6.45)-(6.47) and (6.50) into Eq. (6.43), we obtain
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From.Eulet’s equation, which governs the inviscid flow at the boundary layer
edge,

dp, = —p.u, du, (6.52)
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Inserting Eq. (6.52) into Eq. (6.51), and multiplying terms, we obtain
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Note that the third and sixth terms (involving on/0x) in Eq. (6.53) cancel; this is
why we never bothered to find an explicit expression for dn/dx. Dividing Eq.

(6.53) by \/2&p.ulp,, we have

I, du, Lo of Pe [ du, a
w2 4, g "H,, " o\ (654
Ill,('/ ) dé +J o ﬂg fj p u dé + 2t & polte f ( )

Denote the “rho-mu™ ratio in Eq. (6.54) by C = py/p. .. Grouping terms in Eq.
(6.54), we finally obtain
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Eq. (6.55) is the transformed boundary layer x-momentum equation for a two-
dimensional, compressible flow.

The boundary layer y-momentum equation, namely Eq. (6.29) stating that
dp/dy = 0 becomes in the transformed space

Lo (6.56)

The boundary layer energy cquation given by Eq. (6.30) can also be trans-
formed. Defining a nondimensional static enthalpy as

h
g=g(&n = i (6.57)

where I, is the static enthalpy at the boundary layer edge, and utilizing the same
transformation as before, Eq. (6.30) becomes
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where Pr = pe,/k and, as before, C = pu/p.p,. (In some of the literature, C is
catled the “Chapman-Rubesin factor.”) The derivation of Eq. (6.58) is left as
homework problem 6.2 for the reader.

Examine Egs. (6.55), (6.56), and (6.58); they are the transformed compress-
ible boundary layer equations. They are still partial differential equations,
where both f and ¢ are functions of & and 5. They contain no further approxi-
mations or assumptions beyond those associated with the original boundary
layer equations, namely Egs. (6.27)-(6.30). However, they are certainly in a less
recognizable, somewhat more complicated-looking form than the original equa-
tions. But do not be disturbed by this; in reality, Egs. (6.55), (6.56) and (6.58)
are in a form that will prove to be practical and useful in the following discus-
sion. Indeed, transformed equations like Eq. (6.55), (6.56) and (6.58) will occur
frequently in our presentation of hypersonic viscous flow, not only in Part II,
but also in our discussion of high temperature chemically reacting flows in Part
ITI. Thus, it is important to understand and feel comfortable with these equa-
tions.

The above transformed boundary layer equations must be solved subject
to the following boundary conditions. The physical boundary conditions were
given immediately following Egs. (6.26)-(6.32); the corresponding transformed
boundary conditions are:

At the wall: =0, f=/=0, g=4q, (fixed wall temperature)
or ¢’ = 0 (adiabatic wall)
At the boundary layer edge: n— oo, =1, g=1

In general, solutions of Egs. (6.55), (6.56) and (6.58) along with the appro-
priate boundary conditions yield variations of velocity and enthalpy throughout
the boundary layer, via u = u, f'(¢, n) and h = h,g(&, n). The pressure through-
out the boundary layer is known, because the known pressure distribution (or
cquivalently the known velocity distribution) at the edge of the boundary is
given by p, = p(&), and this pressure is impressed without change through the
boundary layer in the locally normal direction via Eq. (6.56), which says that
p = constant in the normal direction at any € location. (This is the usual bound-
ary layer result. Keep in mind that here we are ignoring the possibility, dis-
cussed earlier, that a finite normal pressure gradient can occur in a hypersonic
boundary tayer.) Finally, knowing h and p throughout the boundary layer, equi-
librinm thermodynamics provides the remaining variables through the appro-
priate equations ol state, for example, T = T(h,p) p = p(h, p), etc. For
convenience, it is useful to visualize solutions of Egs. (6.55) and (6.58) displayed
as profiles through the boundary layer at various & locations, as qualitatively
sketched in Fig. 6.5. At the top of Fig. 6.5, velocity profiles (1 as the ordinate
and u as the abscissa) are shown at three different stations along the surface,
denoted by &,, £, and &;. At the bottom of Fig. 6.5, static enthalpy profiles (i as
the ordinate and h as the abscissa) are sketched at three different stations. In
general, even though these profiles are calculated in the transformed £ — # space,
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FIGURE 6.5
Qualitative sketches of nonsimilar boundary layer profiles.

they will be different profiles at each different value of £. Boundary layers that
exhibit this behavior, which is the case tn general, are called nonsimilar bound-
ary layers. This is in contrast to the concept of a self-similar boundary layer
illustrated carlier in Fig. 6.4, and which is a special case that will be discussed in
subsequent paragraphs.

Included in the general boundary layer solution such as sketched in Fig.
6.5 are the velocity and enthalpy gradients at the wall, given by f"(£, 0) and
¢'(&, 0). From the point of view of applied problems, this is the real payotl from
a boundary layer solution because the local surface skin [riction coefficient ¢, is
related to f"(&, 0) and the local heat transfer rate at the surface is related to
g'(£, 0). These relations are obtained as follows. The local skin [riction coeflicient
¢, is defined as

P (6.59)
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where 7,, is the local shear stress at the wall, given by

W] co

Combining Eqs. (6.59) and (6.60), and utilizing the transformations given by’
Eqs. (6.39) and (6.44), we obtain

2 Ju 2 u,p,, [Ou
cp=1 — - =1 - —
= oaz) ™oy ) " \oad ) e \an )

2 ulp. .
(E;“) ff (&0

It

or

2
o= p“\w/’LJ “(£,0) (6.61)

The local heat transfer coefficient can be expressed by.any one of several defined
parameters, such as the Nusselt number, Nu, or the Stanton number Cy;, defined
as follows

L] V
=S 6
N (T = T (662)

qw

A 6
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C” =

where ¢, is the local heat transfer rate (energy per sccond per unit area) at the
wall, x 1s the distance along the wall measured from the leading edge, k, is the
thermal conductivity at the edge of the boundary layer, and T, and h,,, arc the
adiabatic wall temperature and adiabatic wall enthalpy respectively. (By defini-

- tion, 1, and h,, are the temperature and enthalpy respectively at the wall when
the heat transfer to the wall, g, is zero. Sometimes, T, are referred to as the
“cquilibrium”™ temperature or “equilibrium” enthalpy respectively.) From the
definitions given by Egs. (6.62) and (6.63) and noting that h = ¢, T for a calori-
cally perfect gas, we write

Nus= - B e | Pelle (| HeCp
kc(Tz‘lw - Tn) peu (’Exw - w) He ke
Nu = Cj, Re Pr (6.64)

or
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Let us concentrate on the Stanton number, since Nu is related to (', via Eq.
(6.64). From Eq. (6.63) and the Fourier equation for heat conduction, namely

we have

e 1 OT 1 k oh
Co = - T e R
Pe “e(hmu - Iu) pe”((hm\ hw) w peue(haw - hu') Cp n,V w

Using the transformations given by Egs. (6.39) and (6.57), this becomes
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In summary, Egs. (6.61) and (6.65) express the skin friction coeflicient and the
heat transfer coefficient at the wall in terms of f”(&, 0) and ¢'(&, 0). In turn,
S7(E 0) and ¢'(&, 0) are obtained from the solution of Eqgs. (6.55) and (6.58) for
the complete flowfield within the boundary layer, taking into account the proper
boundary conditions. There is no way of obtaining f” and ¢ at the wall
directly: only a complete solittion of the boundary layer will provide the results
at the waltl-—the main practical results of any boundary layer analysis.

The actual solution of Egs. (6.55) and (6.58) for a general, nonsimilar
boundary layer requires the solution of coupled, nonlinear partial differential
cquations as a two-point boundary value problem, the two boundaries being
n =0 and n — % (or i at least large enough to be outside the boundary layer).
These matters will be discussed in Sec. 6.6. In the remainder of the present
scction, a simpler approach will be considered. We will examine cases where the
boundary layer is sclf-similar, i.c., where the picture shown in Fig. 6.4 holds. We
will consider two classic aerodynamw problems—flow over a flat plate, and flow
around a stagnation point.

Flat Plate Case

The inviscid flow over a flat plate at zero angle of attack is characterized by
constant properties, i.e.,

11, = const. T, = const. p. = const.
Furthermore, let us assume either a constant temperature wall

T.,, = const.
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or an adiabatic wall

oT —0
0}; w B

Examine Eqs. (6.55) and (6.58) for this case. Here, du,/dé =0, and u,, p, and h,
are constant values, independent of £ Under these conditions, Egs. (6.55) and
(6.58) become

i o ppn e OO
€fy +/f —2s<f oF a¢f> (6.66)
and
c o 09 o oo,
<Pr (1> +fg = 25(] 2 g 575) - Cﬁe 9] (6.67)

Equations (6.66) and (6.67) are still partial differential equations. Let us now go
through a thought experiment. Let us assume that f and ¢ are functions of »
only, i.e., assume that f and g are independent of £ Insert this assumption into
Eqgs. (6.66) and (6.67). If in the resulting equations all dependency upon ¢ drops
out, then the equations become ordinary differential equations, and we have a
verification that the assumption is correct. For the flat plate case, this is indeed
true because when the assumptions of /' = f(5) and g = g(y) are inserted into
Eqs. (6.66) and (6.67), they become

<fy+ff"=0 (6.68)

and

P

C r 2
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Examining Egs. (6.68) and (6.69), we see no ¢-dependency; indeed, these equa-
tions are now ordinary differential equations in terms of the single independent
variable n. Equations (6.68) and (6.69) are the governing equations for a com-
pressible boundary layer over a flat plate with constant wall conditions, and
they demonstrate that such a boundary layer is self-similar. Along with the
boundary conditions, these equations represent a two-point boundary value
problem for coupled, ordinary differential equations. Also note in these equa-
tions that both C = pp/p,p, and Pr = pe,/k are the local values at each point
within the boundary layer, and in general are variables, that is, C = C(n) and
Pr = Pr(y). Indeed, the variation of C across the boundary layer can be quite
large for hypersonic boundary layers, ranging over an order of magnitude or
more. On the other hand, the variation of Pr across the boundary layer is
usually no more than 20 or 30 percent.
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The actual numerical solution of Eqgs. (6.68) and (6.69) frequently takes the
form of a “shooting™ technique, as described below. Equation (6.68) is a third-
order cquation, and Eq.(6.69) ts sccond-order. Therefore, in numerically inte-
grating the equations using a standard technique such as the Runge-Kutta
method starting at the wall and marching across the boundary layer to the outer
edge, five boundary conditions at y = 0 must be specified. In terms of the prob-
lem itself, we have specified only three conditions at the wall, namely

SO =0 SO =0 ¢40)=g.,

Thus, to integrate the equations, we must assume two addttional conditions at
the wall, ie., we must assume values for f”(0) and ¢'(0). With this tn mind, the
straightforward “shooting™ technique is carried out as follows:

1. Assume values for f7(0) and ¢’(0). Numbers on the order of 0.5 to 1.0 are
usually good assumptions.

2. Numerically integrate Eqgs. (6.68) and (6.69) across the boundary layer, going
to large enough values of n such that f'(n) and g(n) become relatively
constant with 7. This would correspond to conditions outside the boundary
layer.

3. Do the resulting values of f'() and ¢(n) at large y approach f“(y) = 1 and
g(y) = 1, which are the appropriate boundary conditions at the edge of the
boundary layer? If not, return to step ! and assume new values for /”(0) and
g'0).

4. Repeat steps 1-3 until the proper values for f”(0) and ¢'(0) are assumed at
the wall such that the integration of Eqs. (6.68) and (6.69) produces the
proper results at large », namely f"(n) = 1 and g(y) = 1.

At the end of step 4, all aspects of the compressible, laminar boundary
layer on a flat plate are known, including the skin friction and heat transfer
determined from the final, converged values of f”(0) and ¢’(0) via simplified
verstons of Eqs. (6.61) and (6.65). These simplified forms are obtained as follows.
For a flat plate, where p,, u, and g, are constant, Eq. (6.33) gives

&= p.u.p.x (6.70)

Inserting Eq. (6.70) into (6.61), and replacing (&, 0) with simply f”(0), we have
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S Pwtty f7(0)
=12 (6.71)
= Pebie \/Re,
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where Eq. (6.71) is applicable to the flat plate case only. Note from Eq. (6.71)
that ¢, o 1/\/1{6,(. [t is interesting to compare this result with the familiar re-
sult for incompressible flow over a flat plate (see, for example, Ref. 5), given by

0.664
¢y (incompressible) = -——— (6.72)

\/ Rex

Working further with Eq. (6.71), we note from the equation of state, p = pRT
that

w_ L
’/’) = (6.73)

Also, recall that u for a gas is a function of temperature only; if we assume an
exponential variation g oc T”, then

e (TuY (6.74)
u, \T. '
Combining Egs. (6.71), (7.73) and (6.74), we have

T n—1 j//(o)
ep= 20 " ERACA (6.75)
4 \/ <TL> \ﬂ{c

The value of f7(0) itself is a function of M,, Pr and 7y through the solution of
Eqs. (6.68) and (6.69). This is because Pr appears explicitly in Eq. (6.69), and the
term u2/h, is proportional to M2 and (y — 1), that is [noting that for a calori-
cally perfeut gas, ¢, = yR/(y — 1) and the free stream speed of sound is a, =

VIRT),

2

uz 2 2
oo —1 — e —(y = M2
o ﬂ =@u-1- RT y—1D- a2 =(y— DM;

Thus, f7(0) is a function of M, Pr, and y through Egs. (6.68) and (6.69); it also
_depends on the wall to free-stream temperatitre (or enthalpy) ratio T,/T, = h,/h,
through the boundary condition. The net result is that we can express the coeffi-

cient of l/\/Rex in Eq. (6.75) with the functional expression F(M,, Pr, y, T,/T,),
writing Eq. (6.75) as

F(M,, Pr,y, T/T)
JRe.

Thus, comparing Egs. (6.72) and (6.76), our compressible boundary layer theory
demonstrates that the familiar coefficient 0.664 in the incompressible result is
replaced by another number which is a function of M,, Pr, y, and T,/T,. The
form of Eq. (6.76) is certainly to be expected, since we ldennﬁed M,, Py, T/T,,
and Re in Sec. 6.3 as the governing similarity parameters for a compressible

viscous flow. The point here is that compressible boundary layer theory, just as

¢ (compressible) =

(6.76)
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in the familiar incompressible case, demonstrates that for laminar flow over a
flat plate, ¢, is inversely proportional to \/Rex; however, the constant of pro-
portionality, which is 0.664 for the familiar incompressible case, becomes for the
compressible case @ number which is a function of the compressible flow similar-
ity parameters. M. Pr, y, and T,/T,. This number is obtained from the bound-
ary layer solution discussed above. In regard to heat transfer to a flat plate,
Eq. (6.65) is combined with Eq. (6.70), resulting in

1 1 | h,
i ~ e
" \/2 \/El,uex/,u(, He Cpy, Po (g — 1)

or

t 1k, p. h g'(0)
- . withe e IV7 6.77
" \/2 He Cp, Po (huw - hw) \/Ecx ( )

where Eq. (6.77) is applicable to the flat plate case only. Note from Eq. (6.77)

that C}, o« I/\/}iex. It is interesting to compare this result with the familiar
result for incompressible flow over a flat plate given by
. . 0.332
C,, (incompressible) = —— P

= 23 (6.78)

Working further with Eq. (6.77), and using the calorically perfect gas relation
h=c¢,T, we obtain

I 1 1 ©
Cy = Pl AU (6.79)

2 Pette Py (To/T. — TJT) JRe,

Recalling Egs. (6.73) and (6.74), we obtain from Eq. (6.79),

1 /TN L 1 g'(0)
Cp= {0 — e 6.80
! NE <7L> Pr, (T/T. = T/T) /Re, 5

In Eq. (6.80), T,./T. can be found from a solution of Egs. (6.68) and (6.69), using
the adtabatic wall boundary condition that (0T/0n) = 0. In turn, the solution of
Egs. (6.68) and (6.69) depends on M, y, and Pr. Thus, in Eq.(6.80), T,,/T. is a
function of M., 7 and Pr, and therefore the entire factor multiplying 1/\/Re)c tn
Eq. (6.80) is simply a function of the similarity parameters

GM,, Pr,y, T/T))
JRe,
Thus, comparing Eqs. (6.78) and (6.81), our compressible boundary layer theory

demonstrates that the familiar coefficient 0.332 Pr~2/2 in the incompressible re-
sult is replaced by another number which is a function of M,, Pr, y and T,/T,.

C, (compressible) =

(6.81)
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Finally, we note that Reynolds analogy linking ¢, and Cg which for the incom-
pressible case is [from Egs. (6.72) and (6.78)]

C
~H! (incompressible) = {Pr~ 2?3 (6.82)
¢y
now for the compressible case becomes (from Eqs. (6.76) and (6.81)
C G T,
C‘; (compressible) = e j(M(,, Pr, 7y, T:> (6.83)

Emphasis is again made that, in Egs. (6.76), (6.81) and (6.83), the values of F
and G are obtained by solving the boundary layer equations [Egs. (6.68) and
(6.69)] with the appropriate boundary conditions. There is no exact method that
cun give an a priori answer for F and G.

A word about the viscosity coefficient and therma! conductivity is in order
here. For a pure, nonreacting gas, the viscosity coefficient is dependent only on
temperature. An engineering approximation is to assume an exponential tem-
perature variation, such as already given in Eq. (6.74), where in the literature the
exponent n seems to vary from 0.5 to 1.0, depending on the nature of the par-
ticular gas. However, perhaps the most commonly used expression for p is

Sutherland’s law
TN T, S
- () Jre D (6.84a)
Hrer 7rcf T+ S

where for air pt,c = 1.789 x 107 kg/ms, T, =288 K, S=110K,and pand T
are in units of kg/ms and K, respectively. Sutherlands law is accurate for air
over a range of several thousand degrees, and is certainly appropriate for hyper-
sonic viscous flow culeulations under the assumptions considered in Part I of
this book. Moreover, under these same assumptions, the thermal conductivity k
can be obtained from g and the Prandt! number as

/l('p
Pr =
T
hence
HEp
k="1 6.84b
Pr © )

For air at standard conditions, Pr = 0.71.

The ubove discussion has presented the theory of laminar, compressible
boundary layers over a flat plate; it was given here to provide the recader with
the flavor of such boundary layer solutions. Let us now consider some repre-
sentative results, particularly at high Mach numbers. Various studies have
addressed the laminar, compressible boundary layer. Most notably, Van Driest
(Ref. 90) calculated flows over a flat plate, and Cohen and Reshotko (Ref. 91)
addressed the entire spectrum of possible self-similar solutions. Figures 6.6 and
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FIGURE 6.6

Velocity profiles in a compressible laminar boundary layer over an insulated flat plate. (From Van
Driest. Ref. 90)

6.7 contain results for an insulated flat plate (zero heat transfer) obtained by
Van Driest (Ref. 90) using Sutherland’s law for 4, and assuming a constant Pr =
0.75. The velocity profiles are shown in Fig. 6.6 for different Mach numbers
ranging from 0 (incompressible flow) to the large hypersonic value of 20. Note
that at a given x station at a given Re,, the boundary layer thickness increases
markedly as M, is increased to hypersonic values. This clearly demonstrates oue
of the wost important aspects of hypersonic boundary layers, namely, that the
boundary laver thickness becomes large at large Mach numbers. Indeed, in
Chap. 7 we will easily demonstrate that the laminar boundary layer thickness
varies approximately as M2. Figure 6.7 illustrates the temperature profiles for
the same case as Fig. 6.6. Note the obvious physical trend that, as M, increases
to large hypersonic values, the temperatures increase markedly. Also note in
Fig. 6.7 that at the wall (y =0) (0T/dy),, =0, as it should be for an insulated
surface (¢,, = 0). Figures 6.8 and 6.9 also contain results by Van Driest (Ref. 90),
but now for the case of heat transfer to the wall. Such a case is called a “cold
wall” case, because T, < T,,. (The opposite case would be a “hot wall,” where
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FIGURE 6.7

Temperature profiles in a compressible laminar boundary layer over an insulated flat plate. (From
Ref. 90.)

heat is transferred from the wall into the flow; in this case, T,, > T,,.) For the
results shown in Figs. 6.8 and 6.9, T,/T, = 0.25 and Pr = 0.75 = constant. Fig-
ure 6.8 shows velocity profiles for various different values of M,, again demon-
strating the rapid growth in boundary layer thickness with increasing M,. In
addition, the effect of a cold wall on the boundary layer thickness can be seen
by comparing Figs. 6.6 and 6.8. For example, consider the case of M, =20 in
both figures. FFor the insulated wall at Mach 20 (Fig. 6.6), the boundary layer

thickness reaches out beyond a value of (y/x)\/Rex = 60, whereas for the cold
wall at Mach 20 (Fig. 6.8), the boundary layer thickness is slightly above
(y/x)ﬁex = 30. This illustrates the general fuct that the effect of a cold wall is
to reduce the boundary layer thickness. This trend is easily explainable on a phys-
ical basis when we examine Fig. 6.9, which illustrates the temperature profiles
through the boundary layer for the cold wall case. Comparing Figs. 6.7 and 6.9,
we note that, as expected, the temperature levels in the cold wall case are con-
siderably lower than in the insulated case. In turn, because the pressure is
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FIGURE 6.8
Velocity profiles in a laminar, compressible boundary layer over a cold flat plate. (Ref. 90.)

the same in both cases, we have from the equation of state p = pRT, that the
density in the cold wall case is much higher. If the density is higher, the mass flow
within the boundary layer can be accommodated within a smaller boundary
layer thickness; hence, the effect of a cold wall is to thin the boundary layer.
Also note in Fig. 6.9 that, starting at the outer edge of the boundary layer and
going toward the wall, the temperature first increases, reaches a peak somewhere
within the boundary layer, and then decreases to its prescribed cold-wall value
T... The peak temperature inside the boundary layer is an indication of the
amount of viscous dissipation occurring within the boundary layer. Figure 6.9
clearly demonstrates the rapidly growing effect of this viscous dissipation as M,
increases—yet another basic aspect of hypersonic boundary layers.

Carefully study the boundary layer profiles shown in Figs. 6.6-6.8. They
are an example of the detailed results which emerge from a solution of Egs.
(6.68) and (6.69); indeed, these figures are graphical representations of Egs.
(6.68) and (6.69), with the results cast in the physical (x, y) space (rather than in
terms of the transformed variable #). In turn, the surface values of ¢, and Cy can
be obtained from these solutions, as given by Egs. (6.71) and (6.77) respectively.
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FIGURE 6.9
Temperature profiles in a laminar, compressible boundary layer over a cold flat plate. (Ref. 90.)
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Ilat plate skin friction coeflicients. (Ref. 90.)
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FIGURE 6.11
Flat plate Stanton numbers. (Ref. 90.)

These results are given in Figs. 6.10 and 6.11. In particular, ¢, is shown in
Fig. 6.10 as a function of M,. Note from this figure the following important
trends:

1. The effect of increasing M, is to decrease c . For an insulated flat plate, ¢, is
reduced by approximately a factor of two in going from M, =0to M, = 20.
Do not be misled by this, however. We see that ¢, decreases as M, increases,
but this does nor mean that the actual shear stress at the wall, 1,,, decreases.
Keep in mind that 1, = }p,ulc, = jyp,MZc,. Hence, although ¢, decreases
gradually as M, increases, 7,, increases considerably as M, increases due to
the M7 variation shown above.

2. The effect of cooling the wall is to increase c,. This makes good physical
sense in light of our discussion above on the effects of cooling on the bound-
ary layer thickness J. A cold wall decreases J, as we have already seen. In
turn, the velocity gradient at the wall is increased when & decreases, that is,
(du/dy),, = O(u,/5). Since 1, = p(du/dy),,, then 1, will increase. Since ¢, =
t./3p.ul, then ¢, will also increase, which confirms the trend shown in
Fig. 6.10.

3. For the insulated wall, as M, — 0, cf\/lrcx — 0.664. This is the familiar result
for incompressible flow, as noted in Eq. (6.72).

Heat transfer results are given in Fig. 6.11. Here, C,, [as calcutated from
Eq. (6.77)] is plotted versus M,. The trends shown here are identical to the
trends shown for ¢, in Fig. 6.10. This is simply a demonstration of Reynolds
analogy [Eq.(6.83)] which states the direct relation between ¢, and Cy. Also
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note that Fig. 6.11 gives finite values of Cy for the insulated wall case. Recall the
definition of Cj; from Eq. (6.63), namely
G
pti(h,, —h,)

For un insulated wall, by definition g,, = 0 and h,, = h,,,. Thus, for the insulated
wall case, C), becomes an indefinite form expressed as

Cu=

C, =
i 0

which clearly has a finite value, as shown in Fig. 6.11.
The physical results shown in Figs. 6.6-6.11 are so important that we sum-
marize them below:

1. Boundary thickness & increases rapidly with M.

2. Temperature inside the boundary layer increases rapidly with M, due to
viscous dissipation.

3. Cooling the wall reduces 6.
4. Both ¢, and C;; decrease as M, increases.
5. Both ¢; and C, increases as the wall is cooled.

Let us consider some further aspects of aerodynamic heating at hypersonic
speeds. Return to the definition of Cj, given by Eq. (6.63). Note from this defini-
tion that acrodynamic heating to the surface is given by

4y = pu.Cylh,, — h,) (6.85)

This equation is important, because it emphasizes that the “driving potential”
for acrodynamic heating to the surface is the enthalpy difference (h,,, — h,). We
will find this to be the case for virtually all cases in aerodynamic heating to high
speed vehicles, even in the chemically reacting cases discussed in Part IIL. In
turn, the calculation of the adiabatic wall enthalpy h,,, is an important consider-
ation before Eq. (6.85) can be used to obtain ¢,. An exact solution for h,,, for
the flat plate can be obtained by solving Egs. (6.68) and (6.69) along with the
insulated wall boundary condition (07/dy), = 0. However in most engineering
related calculations, the value of h,,, (and of T,,, = h,/c ) is expressed in terms
of the recovery factor r, defined as

u?
huw = hu +r = (686)
2
At the outer edge of the boundary layer, we have
u?
he =h,+ % (6.87)

2
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where hg is the total enthalpy in the inviscid flow outside the boundary layer.
Substituting Eq. (6.87) into (6.96), we have

h,, =h,+ r(hyg — h)

p = Naw = he (6.88)
hy —h

e

For a calorically perfect gas, where h = ¢, T, Eq. (6.88) can be written as

Tw—T
e (6.89)

For incompressible flow, the value of r is related to the Prandtl number as
r= \/Pr. Exact results for r for compressible flow are shown in Fig. 6.12, ob-
tained from Ref. 83, and are compared with the ﬁr = \/0.715 = 0.845. Note
that r decreases as M, increases through the hypersonic regime. However, also
note that the ordinate is an expanded scale, showing that r decreases by only 2.4
percent from M, = 0 to 16. Hence, for all practical purposes, we can assume for
laminar hypersonic flow over a flat plate that

r=/Pr (6.90)

With Eqgs. (6.90) and (6.88), we can readily estimate A, for use in Eq. (6.85). To
complete an engineering analysis of ¢,, using Eq. (6.85), we must obtain an esti-
mate of C,;. Again, in an exact solution, C, would be obtained by solving Egs.
(6.68) and (6.69) for the specified wall temperature T,. However, we can esti-
mate C,; using Reynolds analogy. The general, exact value for Reynolds analogy

0.86—
0.85— s . .
QNSE  Using Blasiugshear distribution
0.84—
r
0.83|—
Using true shear distribution

082
0.81 I ! | | | | 1 J

0 2 4 6 8 10 12 14 16

Mach number, M.

FIGURE 6.12
Comparison of exact and approximate recovery factor for laminar flow over a flat plate. (Ref. 83.)
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FIGURE 6.13

Comparison of exact and approximate Reynolds analogy factor for laminar flow over a flat plate.
(Ref. 90.)

is expressed by Eq. (6.83); numerical solutions are given in Fig, 6.13, obtained
from Ref. 83. Note that the ratio ¢,/C, decreases as M, increases across the
hypersonic regime. However, again note that the ordinate is an expanded scale,
and ¢,/C,, decreases by only 2 percent from M, = 0 to 16. Thus, the incompres-
sible result given by Eq.(6.82) is a reasonable approximation at hypersonic
speeds, namely

Cn_1pan (6.91)

e, 2

This brings to an end our discussion of hypersonic flat plate laminar

boundary layers. Although the results have been obtained for the special case of
a flat plate, their value goes far beyond that special case. For example, the phys-
ical trends listed above hold for hypersonic boundary layers over general aero-
dynamic shapes. Moreover, the actual flat plate results are frequently applied to
slender three-dimensional shapes in a “localized” sense, following a given
streamline over a thin, three-dimensional body. Therefore, before progressing
further, review all the material in the present section until you feel comfortable
with the ideas and results. A

Stagnation Point Case

We now discuss the second of the two classical problems considered in this
section, namely, the laminar boundary layer at a stagnation point. Consider the
stagnation region on a blunt body, as sketched in Fig. 6.14. The boundary layer
thickness is finite at the stagnation point. As before, x is the distance measured
along the surface, and u, is the velocity in the x direction at the outer edge of
the boundary layer. For the time being, we will consider two-dimensional flow,
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FIGURE 6.14
Stagnation region geometry.

hence Fig. 6.14 represents a blunt, two-dimensional cylindrical body with infinite
span perpendicular to the page. The local surface radius of curvature at the
stagnation point is R.

Let us consider the possibility of a self-similar solution to the governing
boundary layer equations, Eqgs. (6.55) and (6.58) for the stagnation point case.
As before, we make the assumption that f and ¢ are functions of  only, hence
Of'JCE = Of JOE = 0¢/0& = 0 in Egs. (6.55) and (6.58). With these assumptions,
Eqgs. (6.55) and (6.58) become respectively,

wy o ppn o 28 e Pe | dle
@Y+ 157 = [(f) p] i (692)
and
c ’ - Pele ., due 1‘3 ”
<E (/) +fg = 25[7’E 75”:| -C E f )2 (6.93)

Equations (6.92) and (6.93) still exhibit ¢ dependency. However, consider the
following aspects associated with the stagnation point. First, in the stagnation
region, u, is very small, and h, = h, (stagnation enthalpy) is very large. Hence

2
uﬂ
0 6.94
h, (6.94)
Next, we observe that the flow velocity is so low In the stagnation region that
we can assume almost incompressible flow conditions to exist in the inviscid
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flow outside the boundary layer. Thus, we use a result from incompressible,
inviscid flow at a stagnation point, namely

du,
u, = (;j;)x (695)

where (du,/dx), is the velocity gradient at the stagnation point external to the
boundary layer. Substitute Eq. (6.95) into (6.33);

* * du,
E=| potipadx =1 pp|—-=] xdx
0 0 dx J

or
du,\ x°
&= mm( I ) 5 (6.96)
Also, consider the term du,/d&. This can be expressed as
du, _ (du\(dx\  (du,/dx) (697)
dé dx \d& (d&fdx)
From Egq. (6.33)
de = p UL, (6.98)
dx

Substituting Eq. (6.98) into (6.97), we have

1 du

[ e

b du (6.99)

du,
dE  poup, dx

Substituting £q. (6.95) into (6.99), we have at the stagnation point
du\ 1 du,
A€ ), peptldufdx)x \ dx
or
du 1
) = — 6.100
(df >x PofleX ( )

Consider the term (2&/u,) du,/dé which appears in Eq. (6.92). Using Egs. (6.95),
(6.96) and (6.100), we obtain

26 du, _ 2[popdufd), (x@]( 1 >=1

u, d& (du,jdx)ex

" (6.101)
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Consider the term 2&(p, u./ph )du/d&) which appears in Eq. (6.93). Using Egs.
(6.95), (6.96) and (6.100), this becomes

gz Pette du du, 5P du du, . r
- ph, dE ph, Pellel I o 2 dx DetleX
du )
ph <dx>A X

Since, at'the stagnation point, x = 0, then the above becomes

o U, du,
5/;),;1, e -0 (6.102)

Also, note in Eq. (6.92) that the term p,/p can be expressed, for a calorically
perfect gas, as

pe_pe T _peh

p pT ph

14

h
; 6.103
=5 g (6.103)

where we have recognized for a boundary layer that p, = p. Substituting Egs.
(6.94) and (6.101)-(6.103) into Eqgs. (6.92) and (6.93), we have

€Y+ "= —g (6.104)

and

C
<ﬁ y) +fg =0 (6.105)

Eqgs. (6.104) and (6.105) are the governing equations for a compressible, stagna-
tion-point boundary layer. Examining these equations, we see no ¢-dependency.
Hence, the stagnation point boundary layer is a self-similar case.

Numerical solutions to Eqs. (6.104) and (6.105) can be obtained by the
“shooting technique” as described earlier in the flat plate case. There is nothing
to be gained in going through the details at this stage of our discussion; rather,
such details will be deferred until Part III, where we will discuss at length a
solution of the stagnation-point problem in a dissociating and ionizing gas.
Instead, we simply state the result of solving Egs. (6.104) and (6.105), correlated
in the following expression obtained from Ref. 92:

m

Cylinder 4, =057 Pr=06 (pe;te)”z\/—ue (haw — h,) (6.106)

dx
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If we had considered an axisymmetric body, the original transformation
given by Eqgs. (6.33) and (6.34) would have been slightly modified as follows:

&= J Dottt 1 dx (6.107)
[}
and
el jy d (6.108)
n=——|pdy :
\/25 0

where r is the vertical coordinate measured from the centerline, as shown in Fig.
6.14. Equations (6.107) and (6.108) lead to equations for the axisymmetric stag-
nation point almost identical to Eq. (6.104) and (6.105), namely

€y + ff" =304 = 4] (6.109)

and
(C a’) +fy =0 (6.110)
Pr

The derivation of Egs. (6.109) and (6.110) is left as a homework problem. In
turn, the resulting heat transfer expression is (Ref. 92):

du,

Sphere g, =0763 Pr=0-6 (p‘,ue)”z\/ ; (haw — 1) (6.111)
dx

Compare Eq. (6.106) for the two-dimensional cylinder with Eq. (6.111) for
the axisymmetric sphere. The equations are the same except for the leading
cocflicient, which is higher for the sphere. Everything else being the same, this
demonstrates that stagnation point heating to a sphere is larger than to a
two-dimensional cylinder. Why? The answer lies in a basic diflerence between
two- and three-dimensional flows. In a two-dimensional flow, the gas has only
two directions to move when it encounters a body—up or down. In contrast, in
an axisymmetric flow, the gas has three directions to move—up, down, and side-
ways, and hence the flow is somewhat “relieved,” i.e., in comparing two- and
three-dimensional flows over bodies with the same longitudinal section (such as
a cylinder and a sphere), there is a well-known three-dimensional relieving effect
for the three-dimensional flow. As a consequence of this relieving eflect, the
boundary layer thickness J at the stagnation point is smaller for the sphere than
for the cylinder. In turn, the temperature gradient at the wall, (6T/dy),,, which is
O(T,/5), is larger for the sphere. Since g,, = k(3T/dy),,, then g, is larger for the
sphere. This confirms the comparison between Eqs. (6.106) and (6.111).

The above results for acrodynamic heating to a stagnation point have a
stunning impact on hypersonic vehicle design, namely, they impose the require-
ment for the vehicle to have a blunt, rather than a sharp, nose. To see this,
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consider the velocity gradient, du,/dx, which appears in Egs. (6.106) and (6.111).
From Euler’s equation applied at the edge of the boundary layer,

dp, = —p,u, du, (6.112)
we have

du. 1 dp. (6.113)

dx pot, dx

Assuming a newtonian pressure distribution over the surface, we have from
Eq. (3.2)

C,=2sin*0

where # is defined as the angle between a tangent to the surface and the free-
stream direction, If we define ¢ as the angle between the normal to the surface
and the freestream, then Eq. (3.2) can be written as

Cp,=2cos* ¢ (6.114)
From the definition of C,, Eq. (6.114) becomes

Pe —

p
~% =2cos’ ¢
qw

or

Pe =24, cos® ¢ + p, (6.115)

Differentiating Eq. (6.115), we obtain

{
ldi: = —4q, cos ¢sin ¢ Z;’lz (6.116)
Combining Egs. (6.113) and (6.116), we have
1 4 d
‘d'; - pi’::’ cos ¢ sin ¢ &‘i’ (6.117)

Equation (6.117) is a general result which applies at all points along the body.
Now consider the stagnation-point region, as sketched in Fig. 6.14. In this re-
gion, let Ax be a small increment of surface distance above the stagnation point,
corresponding to the small change in ¢, A¢. From Eq. (6.95)

", = (‘5:) Ax (6.118)
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Also, in the stagnation region ¢ is small, hence, from Fig. 6.14,

cos p x~ 1 (6.1194)
As
sin (/)zq‘)zAd)z% (6.119b)
df/)_l 6.119
= (6.119¢)

where R is the local radius of curvature of the body at the stagnation point.
Finally, at the stagnation point, Eq. (6.114) becomes

Pe — P
c =2=Pe"Px
’ o
or

Substituting Eqgs. (6.118)-(6.120) into (6.117), we have

du\* 2p. — po) (AX\/ 1
(dx h peAxri (ﬁ)(ﬁ)

d“k‘ l ( e w)
v, 1 JAPe = Po) )
dx R \/ e (6.121)

or

Examine Egs. (6.106) and (6.111) in light of Eq. (6.121). We see that

(6.122) .

This states that stagnation-point heating varies inversely with the square root of
the nose radius; hence, to reduce the heating, increase the nose radius. This is the
reason why the nose and leading edge regions of hypersonic vehicles are blunt;
otherwise, the severe aerothermal conditions in the stagnation region would
quickly melt a sharp leading edge. Indeed, for earth entry bodies, such as the
Mercury and Apollo space vehicles (see Fig. 1.7), the only viable design to over-
come aerodynamic heating is a very blunt body. The derivation leading to Eq.
(6.122) is quantitative proof of the need for blunt bodies in hypersonic applica-
tions. There is also an important qualitative rationale for hypersonic blunt
bodies, which is presented in Refs. 1 and 5, and hence will not be repeated here.
The reader is encouraged to examine these qualitative discussions in Refs. 1 and
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Experiments
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FIGURE 6.15

Stagnation point Stanton number versus Re based on nose radius. (From Koppenwallner, Ref. 79.)

5, in order to acquire a more in-depth understanding of the hypersonic aerody-
namic heating diflerences between slender and blunt bodies. The fact that g, is
inversely proportional to \/R is experimentally verified in Fig. 6.15, obtained
from Ref. 79. Here, various sets of experimental data for Cy, at the stagnation
point are plotted versus Reynolds number based on nose diameter; the abscissa
is essentially proportional R. This is a log-log plot, and the data exhibit a slope
of —0.5, hence verifying that ¢, oc l/ﬁ.

As a corollary to the above discussion on stagnation-point heating, we
note that for a laminar flow around a cylindrical or spherical nose, q,, drops
considerably with distance from the stagnation point. This is graphically demon-
strated in Fig. 6.16, taken from Ref. 79. Here, the heat transfer distribution
around a circular cylinder is given in terms of q,(¢)/q,(0), where ¢,(0) is the
stagnation point heat transfer, and ¢ is the angle shown in Fig. 6.14. Figure 6.16
displays experimental data recently obtained by Koppenwallner at Germany’s
DFVLR, and reported in Ref. 79. The solid curve in Fig. 6.16 is simply a fairing
of the data. Note the rapid drop in g, as ¢ increases. The local values of q,, vary
approximately as cos¥? ¢. Indeed, Beckwith and Gallagher (Ref. 93) have given
the following curve-fit for heat transfer data around an unswept circular
cylinder:

Nu = Nu, (0.7 cos*? ¢ + 0.3)

where Nu, is the Nusselt number at the stagnation point. (Recall from Eq. (6.64)
that Nu = Cy Re Pr))
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Heat transfer distribution around a circular cylinder. (From Ref. 79.)

Summary

This concludes the present section on similar solutions of hypersonic laminar
boundary layers. We have seen that the governing boundary layer equations,
which are partial differential equations [Egs. (6.27)-(6.30)], reduce to a system
of ordinary differential equations for the special cases of the flat plate and the
stagnation point. Hence these special cases are examples of self-simiar solutions,
There are other cases where self-similar solutions apply, e.g., supersonic and
hypersonic flow over a right-circular cone, where the inviscid flow at the edge of
the boundary layer is constant, independent of distance from the nose tip. In
addition, Cohen and Reshotko (Ref. 91) give self-similar results for a whole
spectrum of external flows generated by
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Ref. 91 tabulates results for = 0326 < ff < 2.0, where f = 0 and ff = | represent
the special cases of the flat plate and stagnation ﬁoint respectively. For cases
other than the above, self-similar solutions are not possible. Indeed, the vast
majority of hypersonic boundary layer applications involve general situations
where the boundary layers are nonsimilar. Such nonsimilar boundary layers are
discussed in the next section. However, the time we spent on similar solutions in
the present scction was in no way wasted. Quite the contrary, the flat plate and
stagnation point cases represent fundamental applications in hypersonic aero-
dynamics. They are useful in two regards: (1) as the source of engineering
formulas for predicting aerodynamic heating, and (2) as a clear demonstration of
the basic behavior of hypersonic boundary layers—behavior which is indicative
of all hypersonic boundary layers, similar or nonsimilar.

6.6 NONSIMILAR HYPERSONIC
BOUNDARY LAYERS

Prior to 1960, the everyday world of boundary layer applications emphasized
approximate solutions of the boundary layer equations; the only exact solutions
that were available were the self-similar solutions discussed in Sec. 6.5. Many of
the approximate solutions involved the assumption of polynomial profiles for u
and N across the boundary layer, and the application of the integral forms of the
governing equations (in contrast to the partial differential equation form pre-
sented in Sec. 6.3). Such integral solutions of the boundary layer are well-known
and extensively presented elsewhere (see, for example, Ref. 83); hence, they will
not be considered here.

In the modern world of hypersonic aerodynamics today, “exact” solutions
of the boundury layer equations, Eqs. (6.27)-(6.30), can be obtained numerically
for arbitrary pressure (hence, velocity) gradients external to the boundary layer.
Here, the word “exact”™ is being used in the same computational fluid dynamic
sense as in Chap. 5, that is, the exact boundary layer equations are used, but
errors are introduced via the numerical solution in the form of truncation and
round-of! errors. Hence, we can readily state that the numerical solution of arbi-
trary nousimilar boundary layers is a fairly common practice in hypersonic acro-
dynamics today. The purpose of the present section is to provide the flavor of
such nonsimilar solutions; the existing literature in this field is so expansive that
we can only highlight some of the more important developments. A thorough
review of numerical boundary layer solutions is given by Blottner in Ref. 94,
which should be consulted for more details,

In this section, we will introduce three separate methods for solving gen-
eral, nonsimilar boundary layers: (1) local similarity, (2) difference-differential
approach, and (3) finite-difference solutions. The first two are somewhat histori-
cal in the sense that they are no longer in widespread use today, but they consti-
tute interesting ideas with which any student of hypersonic viscous flows should
be acquainted. The last item, finite-difference solutions, represents today’s state
of the art.
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Local Similarity Method

The method of local similarity is not a precisely exact solution for general
nonsimilar boundary layers, but it is an important bridge between the exact self-
similar technique discussed in Sec. 6.4 and the exact nonsimilar solutions in the
present section. The concept of local similarity is outlined below:

e Local

. Consider a boundary layer with properties at the outer edge and at the wall

which have an arbitrary variation with x, as sketched in Fig. 6.17.

. Apply the general transformed boundary layer equations, Eqs. (6.55) and

(6.58), to a small slice of the boundary layer located at some local value of x,
say x = x, this small slice is shown as the shaded region located at x, in Fig,
6.17. Take the thickness of this slice, Ax, to be small enough such that the
variations of T,, u,, h,, p, etc,, over Ax are small. Indeed, assume T, u,, h,,
ete. to be equal to their local values at x,. This includes the gradient du,/dé&,
which is taken to be a numerical value in Eqs. (6.55) and (6.58) equal to its
local value at x,.

. In Lgs. (6.55) and (6.58), assume that all the partial derivatives with respect

to & namely, f'/0&, Of/0¢ and dg/dé are small and can be neglected. This is
why the local similarity method is an approximate method. In a truly self-
similar solution, these derivatives are precisely zero. Here, they are finite, but
we assume them to be small enough so that they can be neglected in Eqs.
(6.55) and (6.58).

Boundary layer edge:
u,, b, T, p, are funclions of x— —
|

—

region of
the boundary- sy
layer T, = T,(x)

1
[ |
- X,

, Ax
| S = faln)
/\‘ X, g =g,(n)
f= 50
g =4,

FIGURE 6.17
Schematic for the concepl of focal similarity.
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4. Under these assumptions, Eq. (6.55) becomes [recalling Eq. (6.103)]

2¢ du
Cu; " N2 e 6123
Y+ 177 = U = 0 g (6.123)
and Eq. (6.58) becomes
C pt, ., du u?
Y p g Hete o e~ e puva -
<Pr y) +Jy =28 o, f IE C/h. " (6.124)

Egs. (6.55) and (6.58) are the exact governing, transformed, boundary layer
cquations, whereas Eqs. (6.123) and (6.124) are approximate forms. At any
given x {or &) station, du,/dé, p,, u,, and h, are the Jocal values, and hence
enter Eqs. (6.123) and (6.124) as specific numerical values. Equations (6.55)
and (6.58) are partial diflerential equations; in contrast, Egs. (6.123) and
(6.124) are ordinary differential equations, in the same spirit as in Sec. 6.5.
Hence, these equations can be solved (say by the *“shooting” technique
described earlier) at the local value of x. The solution gives [ = f(n) and
g = g(n) for the slice of the boundary layer located at x, (the first shaded
region of Fig. 6.17).

5. Pick another slice of the boundary layer at another value of x, say x = x,,
and repeat the above process. This is shown schematically in Fig. 6.17, where
two locations are denoted by x, and x,. The above locally similar solution is
carried out at each value of x, resulting in f,() and g,(n) at x; and f,(n) and
g.(n) at x,. In general,

i # f,(n)
g:(m) # g.(n)

Thus, the “locally similar” solution is a solution of the nonsimilar boundary
layer, albeit 1n an approximate sense.

6. After application to many values of x, the above procedure yields the skin
friction {via f’(0)] and heat transfer {via g(0)] as functions of x (numerically).

One of the best examples of the application of local similarity is the work
by Kemp, Rose, and Detra (Ref. 95), which treated the boundary layer over a
hemisphere-cylinder as sketched at the top right of Fig. 6.18. This work treated
chemically reacting, dissociating air, which is the purview of Part III. However,
these results are presented here to demonstrate the viability of the local similar-
ity method. Figure 6.18 gives the variation of g, as a function of angular
distance ¢ away from the stagnation point, as measured in a shock tube. The
free-stream conditions were such as to simulate the pressure and enthalpy levels
associated with free flight in the atmosphere with a velocity of 18,000 ft/s at an
altitude of 70,000 (1. [The actual shock tube free-stream conditions were diflerent
than the above velocity and altitude; recall only low supersonic Mach numbers
can be produced in a shock tube (see, for example, Ref. 4), but that the actual
stagnation enthalpy and pressure can be directly simulated.] The symbols in
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FIGURE 6.18

Comparison of the local similarity method with shock-tube data for the heat transfer distribution
over a hemisphere-cylinder. (From Ref. 95.)

Fig. 6.18 denote shock tube data, and the curve represents the local similarity
calculation. Considering the scatter of the shock-tube data, the local similarity
method compared fairly well with experiment. It is interesting to note that the
numerical results in Ref. 95 indicate that, for ordinary blunt bodies, the calcu-
lated variation of ¢'(0) as a function of x around the body is very weak. To be
precise, for the conditions treated in Ref. 95,
096 < I Oasafunclionofx -\
¢'(0) at the stagnation point

e, the transforined enthalpy gradient at the wall is essentially the same at all
points around the body. Since q,, is obtained from Eqgs. (6.63) and (6.65), then
the strong variation of ¢, with ¢ shown in Fig. 6.18 is due to the variation of h,,
p. and u, in those equations.

Note that the local similarity method blocks out any effect of the upstream
properties within the boundary layer. The calculation at any given x does not
utilize values of the boundary layer profiles upstream of x. Therefore, the
“history” of the development of the boundary layer from the leading edge to the
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local station x is not properly accounted for in the local similarity method.
However, the upstream history of the inviscid flow is transmitted to the local
similarity solutions insofar as the local values of u,, h,, etc., are influenced by
this history. This physical defect does not appear to be serious, probably for the
following reason. The boundary layer equations are parabolic partial differential
equations; for such equations, information is readily transmitted across the flow,
normal to the surface. At the same time, information is carried downstream;
however, the history of this information “damps out™ quickly with distance
downstream. That is to say, the real, physical boundary layer at any given loca-
tion x is mainly dominated by the local wall and edge conditions at x, and these
conditions are the driving parameters in the local similarity method.

Difference-Differential Method

Unlike the approximate local similarity method discussed above, the difference-
differential method is inherently an “exact™ solution of the general boundary
layer equations. The general idea was originated in 1937 by Hartree and
Womersley (Ref. 96), but was not applied in a practical sense until the work of
A. M. O. Smith in the 1960s. Smith utilized the difference-differential method
extensively, and with success; a typical example of his work is represented by
Ref. 97. The idea is as follows, Consider the general, transformed boundary layer
equations [Egs. (6.55) and (6.58)]. These equations are to be solved for arbitrary
flow conditions at the boundary layer edge, and arbitrary wall conditions. This
arbitrary boundury layer is sketched in Fig. 6.19. Also shown is a grid network
at four different ¢ (or x) stations, namely (i — 2), (i — 1), i and (i + 1). Assume
that we wish to calculate the boundary layer profiles at the station denoted by i.
In the difference-differential method, the ¢ derivatives in Eqgs. (6.55) and (6.58)
are replaced by finite-diflerence quotients. For second-order accuracy, Smith
used the following three-point one-sided diflerence,

<t"f> /! ;‘%i; [)_i/(ii‘z)

os) = A at a given j (6.125)

Identical expressions are used for df'/0¢ and 8¢g/d&. We assume that the bound-
ary layer profiles have already been solved at locations (i — 1) and (i — 2), hence
Ju-y and f;_5, in Eq. (6.125) are known numbers. The only unknown in Eq.
(6.125) is f;. When the difference expressions such as Eq. (6.125) are substituted
into Eqs. (6.55) and (6.58), the only derivatives that appear are 5 derivatives.
This can easily be seen by displaying, for example, Eq. (6.55) as follows.

. 2: 1 l
€y + 1 == [(W B &} du,
u, p | ¢
Y = it fn] Y Y i
+2c,{f[ A } y [ Lo }}

(6.126)
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FIGURE 6,19
Schematic for finite-difference solution of the boundary layer.

where the subscript i has been dropped to emphasize that f; is simply the un-
known [ at the given station denoted by i. Equation (6.126) can be rewritten as

d .
oy + 4= [(/ )t - _| lué + [3(f)2 + Af" =3+ Bf"] 6.127)

where 4 and B are simply known numbers, obtained from the previous bound-
ary layer solutions at stations (i — 1) and (i — 2). (Note: These numbers will
change with j as the integration is carried out across the boundary layer at a
given station i) Carrying out the same substitution in Egs. (6.58) we obtain for
the cnergy equation,

C ! ) ) . 1,1 dh lf ”
Y = S0P B Y Fy 2" -y
Pr A& ph dé hi,

e

(6.128)

where It and F are known numbers. Examine Eqs. (6.127) and (6.128) closely;
the only derivatives that appear are n derivatives, denoted by the prime. (Recall
that du,/d¥¢ is a known number, obtained from the known velocity variation at



VISCOUS FLOW BASIC ASPECTS, BOUNDARY LAYER RESULTS, AND AERODYNAMIC HEATING 265

the outer edge of the boundary layer.) Hence, Eqs. (6.127) and (6.128) are ordin-
ary differential equations which can be integrated across the boundary layer at
station i in the same manner as described earlier, i.e., using an iterative “shoot-
ing” technique to match the boundary conditions at the wall and the outer edge.
Note thut Egs. (6.127) and (6.128) are still the exact boundary layer equations;
no simplifying physical assumptions have been made in going from Egs. (6.55)
and (6.58) to Egs. (6.127) and (6.128). Therefore, the difference-differential
method is un “exact”™ method for the solution of general nonsimilar boundary
layers.

Returning to Fig. 6.19, recall that the solution at location i is dependent on
previous solutions upstream of i, namely at (i —1) and (i —2). The entire
boundary layer solution must be started at some location, say a leading edge or
at a stagnation point. In Fig. 6.19, station 1 denotes the stagnation point. The
boundary layer solution at this location can be obtained from the self-similar
solution discussed in Sec. 6.4. Moving to the next downstream location, station
2 tn Fig. 6.19, the difference-differential method can be implemented, but with
two-point one-sided differences for the & derivatives, i.c.

o_fi=hi

o Al e
Moving to the next downstream location, station 3, the full method as described
above can now be implemented. In this fashion, the complete nonsimilar bound-
ary layer over the whole body can be calculated.

A word of caution is noted here. In comparison to the usual selfsimilar
equations [such as Eqs. (6.68) and (6.69) for the flat plate], Egs. (6.127) and
(6.128) contain a number of extra terms. These terms act as “forcing functions,”
and causc the numerical solution of these equations to be much “stiffer” than in
the flat plate or stagnation point cases, i.e., the solution tends to become numer-
ically unstable unless fairly accurate guesses for f”(0) and ¢'(0) are made at the
wall to start the iterative “shooting technique.” As Smith and Clutter state in
Ref. 97, “meeting boundary conditions efficiently has been the most difficult part
of the entire problem.”

Nevertheless the difference-differential method is an “exact” solution to
general, nonsimilur boundary layers, and it has been applied with success to
hypersonic problems. An example is given by Fig. 6.20, which shows the heat
transfer distribution over a flat-faced cylinder at Mach numbers between 7.4 and
9.6 obtained from Ref. 97. The open symbols represent experimental data, the
dashed line is from the local similarity method as calculated in Ref. 95, and the
solid curve is from the difference-differential method as calculated in Ref. 97.
Note that, as is to be expected, the difference-differential method gives better
agreement with experiment than with local similarity. The flow over a flat-faced
cylinder is a good test case for any theory, because the boundary layer is highly
non-similar, especially in the rapid expansion region at the corner. Note also the
physical trends shown in Fig. 6.20. Here is a case where the stagnation point is
not the location of maximum heating; rather, the peak heat transfer occurs in
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FIGURE 6.20
Ieat transfer distribution over a flal-faced cylinder. (From Ref. 97.)

the corner region. The physical explanation for this is as follows. The rapid
expansion of the inviscid flow around the corner imposes an extremely large
favorable pressure gradient on the boundary layer, which results in an actual
reduction of the boundary layer thickness. In turn, the temperature gradients
within the boundary layer, including at the wall, are increased because they are
inversely proportional to the boundary layer thickness, (9T/dy), = O(T,/9).
Because ¢,, = k(0T/dy),,, we therefore expect the local heat transfer to increase.
This trend is clearly demonstrated in Fig. 6.20.

Finite-Difference Method

In the difference-differential method discussed above, the & derivatives are
replaced by finite differences. The next logical step is to replace both the & and
derivatives by finite differences. Such finite-difference solutions are discussed
here; they represent the current state of the art in hypersonic boundary layer
solutions. '

Consider again the general, transformed boundary layer equations given
by Egs. (6.55) and (6.58). Assume that we wish to calculate the boundary layer
at station (i + 1) in Fig. 6.19. As discussed in Chap. 5, the general philosophy
of finite difference approaches is to evaluate the governing partial differential
equations at a given grid point by replacing the derivatives by finite-difference
quotients at that point. Consider, for example, the grid point (i, )) in Fig. 6.19.
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At this point, replace the derivatives in Egs. (6.55) and (6.58) by finite difference
expressions of the form:

9{ _ S ‘fu (6.129)
0¢ A&
‘y _ ()(fi+\‘j+| _./;'Jr»l.jr—il) (}7’ ())(fi‘jﬂ _fi,j—l)
o 28 * 28 (6:130)
Gf O fivyjer — Aiwr it fivg-0) | Q=0 jer — Yy + fij=1)
s @t * (an)? (6130
=0+ A =0V f (6.132)

where 0 is a parameter which adjusts Egs. (6.129)-(6.132) to various finite-differ-
ence approaches (to be discussed below). Similar relations for the derivatives of
g are employed. When Egs. (6.129)-(6.132) are inserted into Egs. (6.55) and
(6.58), along with the analogous expressions for g, two algebraic equations are
obtained. If ¢ = 0, the only unknowns that appear are f;,, ; and g;,, ;, which
can be obtained directly from the two algebraic equations. This is an explicit
approach. Using this approach. the boundary layer properties at grid point
(i + 1,)) are solved explicitly in terms of the known properties at points (i, j + 1),
(4, J) and (i,j — 1). [Recall that the boundary layer solution is a downstream
marching procedure; we are calculating the boundary layer profiles at station
(i + 1) only after the flow at the previous station (i) has been obtained.]

When 0 <0<, then fiig i fivrsn Sirt-to Givtgets Givr, and
giv1 -1 appear as unknowns in Egs. (6.55) and (6.58). We have six unknowns
and only two equations. Therefore, the finite-difference forms of Egs. (6.55) and
(6.58) must be evaluated at all the grid points through the boundary layer at
station (i + 1) simultaneously, leading to an implicit formulation for the
unknowns. In particular, if § = 1/2, the scheme becomes the well-known Crank-
Nicolson implicit procedure, and if 0 = 1, the scheme is called “fully implicit.”
These implicit schemes result in large systems of simultaneous algebraic equa-
tions, the coefficients of which constitute block tridiagonal matrices.

Already the reader can sense that implicit solutions are more elaborate
than explicit solutions. Indeed, we remind ourselves that the subject of this book
is hypersonics, and it is beyond our scope to go into great computational fluid
dynamic detail. Therefore, we will not claborate any further. Our purpose here is
only to give the flavor of the finite-difference approach to boundary layer solu-
tions. Chapter 7 of Ref. 52 contains a detailed discussion of such matters, and
Ref. 94 is a thorough survey of the subject. The reader is strongly encouraged to
consult these references. We emphasize that modern hypersonic boundary layer
solutions (of an “exact” nature) are predominately finite-difference solutions.
They ure inherently faster and more accurate solutions than any of the methods
discussed previously. We will revisit such finite difference solutions in Part 111,
when we discuss the analysis of chemically reacting boundary layers.
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At this stage, return to the original boundary layer equations in physical
coordinates, Eqs. (6.27)-(6.30). The finite-difference schemes mentioned above
can be applied directly to these equations; there is no compelling need to deal
with the transformed equations. In this case, the derivatives in Eqgs. (6.27)-(6.30)
are replaced by difference quotients such as

N
M gyl

Ox Ax

MO0ty oy = i yyen) (L= O e = 8,520

Ay 20y 2Ay

etc.

In this case, the real physical variables are the unknowns, such as ;. ¢ jiy,
Uiy j» M4y, j—1, €tc. However, when the computations are carried out in physi-
cal (x, y) space, the grid spacing in the y direction must be very small; this is
because the boundary layer properties change rapidly near the wall, and the grid
must be fine enough to accurately define these changes. Therefore, the transfor-
mation to &-n space given by Eqs. (6.33) and (6.34) is still useful here, because
the Lees-Dorodnitsyn transformation stretches the grid in the normal direction,
especially near the wall, i.e, a uniformly spaced grid in terms of n is equivalent
in physical spuce to finc spacing near the wall, and coarse spacing near the
boundary layer edge, a desirable arrangement for efficient boundary layer calcu-
lutions. Thercfore, it is frequently recommended to carry out finite-difference
calculations using the transformed &- space.

In summary, a finite-difference solution of a general, nonsimilar boundary
tayer proceeds as follows:

1. The solution must be started from a given solution at the leading edge, or at
a stagnation point (say station ! in Fig. 6.19). As stated earlier, this can be
obtained from appropriate self-similar solutions. ]

2. At station 2, the next downstream station, the finite difference procedure
reflected by, Egs. (6.129)-(6.132) yields a solution of the flowfield variables’
across the boundary layer.

3. Once the boundary layer profiles of u and T are obtained, the skin friction
and heat transfer at the wall are determined from

e au

My w
oT

= (x3).

- -and-
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Here, the velocity gradients can be obtained from the known profiles of u and
T by using one-sided differences, such as

du —3uy + 4u, — uy
) =2 3 A
(ﬁy)w Ay (6.133)
T =3 +4T, — T,
= 134
(), 24y (19

In Egs. (6.133) und (6.134), the subscripts 1, 2, and 3 denote the wall point
and the next two adjacent grid points above the wall. Of course, due to the
specified boundary conditions of no velocity slip and a fixed wall tempera-
ture, 1, = 0 and T, = T, in Eqgs. (6.133) and (6.134).

4. The above steps are repeated for the next downstream location, say station 3
in Fig. 6.19. In this fashion, by repeating applications of these steps, the com-
plete boundary layer is computed, marching downstream from a given initial
solution.

An example of results obtained from such finite-difference boundary layer
solutions is given in Figs. 6.21 and 6.22, obtained by Blottner (Refl. 94). These
are calculated for flow over an axisymmetric hyperboloid flying at 20,000 fi/s at
an altitude of 100,000 ft, with a wall temperature of 1000 K. At these conditions,
the boundary layer will involve dissociation, and such chemical reactions were
included in the calculations of Ref. 94. Chemically reacting boundary layers are
the purview of Part 111; however, some results of Ref. 94 are presented here just
to illustrate the finite-difference method. For example, Fig. 6.21 gives the calcu-
lated velocity and temperature profiles at a station located at x/R, = 50, where
Ry is the nose radius. The local values of velocity and temperature at the
boundary layer edge are also quoted in Fig. 6.21. Considering the surface prop-
erties, the variations of C), and ¢, as functions of distance from the stagnation
point are shown in Fig. 6.22. Note the following physical trends illustrated in
Fig. 6.22:

I. The shear stress is zero at the stagnation point (as is always the case), then it
increases around the nose, reaches a maximum, and decreases further down-
stream.

2. The values of C,, are relatively constant near the nose, and then decrease
further downstream.
3. Reynolds analogy can be written as
¢
¢, =L (6.135)
2s
where s is called the “Reynolds analogy factor.” For the flat plate case, we see
from Eq. (6.91) that s = Pr?’3. However, clearly from the results of Fig. 6.22
we see that s is a variable in the nose region because Cy, is relatively constant
while ¢, is rapidly increasing. In contrast, for the downstream region, ¢, and
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FIGURE 6.21
Velocity and temperature proliles across the boundary layer at x/Ry =50 on an axisymmetric
hyperboloid. (From Blottner, Ref. 94.)
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Stanton number and skin friction coeflicient (based on free-stream properties) along a hyperboloid.
(From Ref. 94.)

C,, are essentially equal, and we can state that Reynolds analogy becomes
approximately C,/¢, = L. The point here is that Reynolds analogy is greatly
affected by strong pressure gradients in the flow, and hence loses its useful-
ness as an engineering tool in such cases, at least when Cy, and ¢, are based
on free-stream quantities as shown in Fig. 6.22.

6.7 HYPERSONIC TRANSITION

To this point in our discussion, we have considered laminar hypersonic flows.
Returning once again to the roadmap in Fig. 1.23, we have completed the first
two items under the viscous-flow branch. In the present section, we will treat the
next item, namely transition from laminar to turbulent flow at hypersonic
speeds.

There is a basic principle that applies universally in our world, in both
physical science and in our daily human activities; simply stated, it is that Na-
ture, left to its own devices, always moves toward the state. of maximum dis-
order. This is never more true than in the flow of a viscous fluid; such flows
begin in the orderly, smooth manner that we define as laminar flow, but at some
downstream region will transit into the disorderly, tortuous motion that we de-
fine as turbulent {low. Transition to turbulent flow has been a well-observed
phenomena in fluid dynamics since the pioneering work of Osborne Reynolds in
the 1880's (see Sec. 4.23 of Ref. 1 for an historical sketch of Reynolds, and Sec.
15.2 of Ref. 5 for a basic discussion of what is meant by transition from laminar
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to turbulent flow). On the other hand, although transition has been “well-ob-
served,” it certainly is not well understood, even to the present day. Turbulence,
and transition to turbuience, is one of the unsolved problems in basic physics.
Our only recourse in aerodynamics is to treat these problems in an approxi-
mate, engineering sense, depending always on as large a dose ol empirical data
as we cin find and swaltow, This situation is particularly severe at hypersonic
speeds, where transition seems to exhibit some peculiar anomalies in comparison
to our experience at lower speeds. All of the discussion in the present section is
flavored by the above remarks.

First, let us address the matter of transition itself; the modeling of fully
turbulent flows will be addressed in the next section. For simplicity, first con-
sider the simple picture of transition, as sketched in Fig. 6.23 for flow over a flat
surface. As discussed in any basic fluid dynamics text (see, for example Ref. 5),
the flow starts out at the leading edge as laminar; this laminar flow is highly
stable, and any disturbances are not amplified. However, at some location
downstream, the laminar flow becomes unstable, and any disturbances (say from
the free stream, or from the surface such as surface roughness) are now ampli-
fied. This point is labeled B in Fig. 6.23, for the beginning of transition. As the
amplification of disturbances continues in this unstable flow, transition to turbu-
lence takes place, finally becoming fully turbulent at point E in Fig. 6.23, where
point E is the end of transition. The region between points B and E is called the
transition region. (See Ref. 98 for a discussion of the basic theoretical aspects of
boundary layer stability, and transition to turbulent flow.) Since our knowledge
of transition is so imprecise, including our knowledge of the extent of the transi-
tion region, enginecring analyses frequently assume that transition takes place at
a point, labeled the transition point in Fig. 6.23. For purposes of analysis, the

Transition
region
— — p——————>
. ———>
Laminar
Turbulent 5
T
B 13
- XT e~
Transiiion
point

FIGURE 623
Schematic of transition.
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flow is assumed laminar upstream of the transition point, and fully turbulent
downstream. The location of the transition point is given by x; in Fig. 623, and
we define a transition Reynolds number as

Re, = PelleXr (6.136)

I

For the accurate prediction of skin friction and acrodynamic heating to a body,
knowledge of the transition Reynolds number is critical. To date, no theory
exists for the accurate prediction of Req; any knowledge concerning its value for
a given situation must be obtained from experimental data. If the desired appli-
cation is outside the existing data base, then an estimate of Re; is essentially
guesswork. For a state-of-the-art discussion of transition, see the definitive
article by Reshotko (Ref. 99).

Given this situation, in the present section we can only discuss some guide-
lines for transition at hypersonic speeds. Many of our remarks will be influenced
by a recent survey by Stetson (Ref. 100). Indeed, Stetson begins by the flat state-
ment that “there is no transition theory,” although our data base at hypersonic
speeds is sufficient to establish some general trends based on experiment. The
hypersonic transition Reynolds number can be expressed functionally as

0 X ow
Re, = _/'(Mw 0. Ty ity 0 kg, B, S0 Ryy Rey Jt, o, V, € oo Ty, d*, 7, Z>
Ox Ry 0z

where M, is the Mach number at the edge of the boundary layer, 0, is a charac-
teristic defining the shape of the body (for a cone, 0, would be the cone angle),
T, is the wall temperature, m is mass addition or removal at the surface, o is the
angle of attack, kg is a parameter expressing the roughness of the surface, E is a
general term characterizing the “environment” (such as free-stream turbulence,
or acoustic disturbances propagating from the nozzle boundary layer in a wind
tunnel), ¢p/Cx is the local pressure gradient, Ry is the radius of a blunt nose tip,
Re, /ft is the Reynolds number per foot (to be discussed later), x/Ry is the
location of the boundary layer while it is immersed in the entropy layer gener-
ated by the nose (effects of the entropy layer can be felt more than a hundred
nose radii downstream of the tip), ¥ is an index of the vibration of the body, C
is the body curvature, dw/0z is the cross-flow velocity gradient, T, is the stagna-
tion temperature, o* is a characteristic dimension of the body, 7 is a chemical
reaction time, and Z is an index of the magnitude of chemical reactions taking
place in the boundary layer. One look at this list, and the reader is justified in
becoming frustrated. Clearly, the transition Reynolds number is an elusive quan-
tity, and it is no surprise that our knowledge of it is so imprecise. However, the
situation is not hopeless; for any given situation, Re; will be dominated by only
a few of the parameters listed above, and the others will be secondary. Let us
examine those parameters which seem to be most important for hypersonic
speeds.
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Mach Number

The Mach number at the edge of the boundary layer, M,, has a strong influence
on the stability of the laminar boundary layer and through this on Re,. Bound-
ary layer stability theory shows that stability of the laminar boundary layer is
generally enhanced by an increasing Mach number, and hence Re, is increased
with increased M,, especially above M, = 4. This is dramatically shown in Fig,
6.24, obtained from Ref. 101, Here we see a plot of Re, versus M, for sharp
cones in both wind tunneis and free flight. Clearly, above Mach 4, Re; increases
rapidly with M,. In basie fluid dynamic courses, a virtual rule of thumb places
the transition Reynolds number for incompressible flow over a flat plate near
5 x 10%; in contrast, at high hypersonic Mach numbers, Re, can be on the order
of 10" This elfect of Much number on transition is extremely beneficial. Since
skin friction and aerodynamic heating are considerably smaller for laminar in
comparison to turbulent flows, the relatively large region of laminar flow that
can occur over a body at hypersonic speeds is a very advantageous design fea-
ture.

IEnvironment

Transition IS quite sensitive 1o disturbances that come from the environment,
such as free-stream turbulence, acoustic disturbances from sources either exterior
or interior to the body, and disturbances that are introduced into wind tunnel
flows from the active turbulent boundary layer on the walls of the tunnel. These
environmental phenomena can make dramatic changes in the transition behay-
tor of a boundary layer. For this reason, wind tunnel measurements of transition
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FIGURE 6.24

Transition Reynolds number dala on sharp cones from wind tunnels and free flight. (From Stetson,
Ref. 100.)
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are always compromized by the environmental question; indeed, for hypersonic
aerodynamics, there is a prevailing feeling that the only meaningful transition
data must be obtained from free-flight experiments. This feeling is reinforced by
the data in Fig. 6.24 which, in addition to the effect of increasing M, also shows
a marked difference in data obtained in wind tunnels compared to that obtained
in free flight. Note that, as we might expect, the flight data is consistently higher
than the correlation of wind tunnel data.

Unit Reynolds Number

The unit Reynelds number is defined as the Reynolds number based on a unit
length, c.g.. unit Re = p.u,x/p, where x is taken as one foot, or one mecter,
yielding the unit Reynolds number per foot or per meter respectively. There is
no basic physical reason to expect the unit Reynolds number to influence tran-
sition; however, experimental data clearly show some correlation with unit
Reynolds number. Considering again Fig. 6.24, we see that the flight data de-
pends on unit Reynolds number, with Rey increasing as unit Re increases. The
role of unit Reynolds number in determining transition at hypersonic speeds has
been the subject of much debate, and even disbelief; however, the weight of
experimental evidence clearly shows that unit Reynolds number plays a strong
role in hypersonic transition. Let us accept this observation at face value here,
and wait for the future to explain its significance.

Angle of Attack

Three-dimensional flows can have a strong effect on boundary layer transition.
An example is given in Fig. 6.25, which shows the measured transition variation
on sharp cones as a function of angle of attack (from Ref. 102). Note that, as «
is increased, transition moves rearward on the windward side, and forward on
the leeward side. This is exactly opposite to what might be expected intuitively
from results at zero angle of attack. For example, consider the windward ray on
the cone in Fig. 6.25. As the angle of attack increases, the local inviscid flow
Mach number decreases, and the local Reynolds number increases. Based on
expericnee at zero angle of attack, both of these changes should cause the transi-
tion point to move forward. However, Fig. 6.25 shows exactly the opposite.
There is clearly an overriding three-dimensional effect. The trends shown in Fig.
6.25 have been observed by many investigators; they arc well established in the
literature. For example, additional angle-of-attack transition data is shown in
Fig. 6.26, obtained from Ref. 103. The case examined is a sharp cone with 0, =
8 at an angle of attack of 2" in a Mach 6 airflow with Re, /ft = 9.7 x t0° Here,
the radial distribution of the transition region is shown by the shaded region;
the axial location of transition (measured along the surface from the tip) is plot-
ted versns the radial angle ¢. The windward ray is denoted by ¢ = 0°, and the
leeward ray by ¢ = 180°. The bottom of the shaded region (labeled B) is the
beginning of transition, and the top of the shaded region (labeled E) is the end
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FIGURE 6.25
Effect on angle of attack on boundary layer transition on a sharp cone, 0, = 8°. (From DiCristin
Ref. 102)

a=252>> x
o =06 A
M, .y
14
] ~

12
Re,
1200
10 ;—_/
P
. ,\-\-\.
X, 1000 E
inches @y e
6l - — — Ia ={
~3 0
8
»
4 T
\. - B~ .. E
2fF T 600
T~~~ B
400
1 4 1 | 1 ]
Q 20 40 60 80 160 120 140 160 180
$, degrees

FIGURE 6.26
Variation of transition region around a sharp cone at angle of attack. 0, = 8°, Re/ft = 9.7 x 105,
M, =6, a=2" (From Ref. 100)
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of transition (corresponding to the sketch in Fig. 6.23). Note that the transition
region moves upstream as we move around the cone from the windward to the
leeward ray, consistent with the results shown in Fig. 6.25. Morcover, note that
the length of the transition region decreases as we move around the cone. For
comparison, the results for zero angle of attack (labeled o = 0°) are also shown
in Fig. 6.26. Clearly, there is a strong three-dimensional effect on transition.
Superimposed on Fig. 6.26 are lines of constant Reynolds number based on the
boundary layer momentum thickness, Re,; the significance of Re, will be men-
tioned later.

Nose Bluntness

As stated in Part 1, the inviscid flow over a blunt-nosed slender body is charac-
terized by the entropy layer created behind the highly curved bow shock wave,
and wetting the body downstream of the nose. Ramifications of this entropy
layer are shown in Fig. 6.27, obtained from Ref. 100. Here, inviscid flow calcula-
tions are shown for a blunted, 8-degree cone at zero angle of attack. The nose
bluntness is small; the nose radius Ry is only 0.04 in, and the length of the cone
is 14 in. The surface values of local Mach number, local static pressure (refer-
enced to the pressure at the stagnation point pg;) and local unit Reynolds
number are plotted versus surface distance from the nose. The sharp cone values
are given by the dashed lines at the right. In spite of the small nose bluntness,
note the dramatic effect of the entropy layer; the local M and Re/ft vary
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FIGURE 6.27
Calculations of inviscid flow over a slender, blunted cone a1 « = 0°, M, =59, 6, = 8°. Nose-tip
radius Ry = 0.04 in. (From Ref. 100.)
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strongly downstream of the nose, and do not recover to the sharp cone values
unlil the end of the 14 inch cone. In contrast, the pressure distribution recovers
much earlier. This is characteristic of the entropy layer—the thermodynamic
properties such as T (hence M through the speed of sound) and p are most
influenced by the tayer. Clearly, the transition behavior of a boundary layer
should feel some effect of s entropy fayer (in comparison to a sharp cone).
This is indeed the case, as shown in Fig. 6.28. This figure is very similar to Fig.
6.26 for a sharp cone, except now Fig. 6.28 includes the effect of nose bluntness,
where Ry = 0.2 in. Compare Figs. 6.26 and 6.28 closely. Note that by adding a
blunt nosc to the cone, transition has been delayed to a distance further down-
strcam of the nose tip. This is characteristic of small nosetip bluntness; the tran-
sition Reynolds number is increased by such bluntness. In contrast, for large
bluntness transition may occur prematurely on the nose itself, and hence the
transition Reynolds number is greatly reduced. This nose tip transition is often
referred to as the “blunt nose paradox.” This phenomena occurs in spite of the
fact that a strong favorable pressure gradient is present on the nose, especially in
the region around the sonic point. In general, favorable pressure gradients stabi-
lize the laminar boundary, whereas adverse pressure gradients are destabilizing.
The phenomena of nose-tip transition is contradictory to this general
behavior-—just another of Nature’s tricks assoctated with transition. In sum-
mary, we can clearly say that nose bluntness aflects transition, but this effect can
be different depending on the amount of nose bluntness.
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"arfation of Iransition region around a blunt cone at angle of attack. 0, = 8°, Re/fl = 19.4 x 10°,
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Wall Temperature

Low-speed experiments have shown that wall temperature can have a major
influence on transition; for boundary layer cooling (T, < T,,) the laminar
boundary layer is more stable, and transition is delayed, whereas for boundary
layer heating (1, > T,,) the laminar boundary layer is destabilized, and transi-
tion occurs earlier. At hypersonic speeds, however, the situation is not so clear.
For moderate cooling, the hypersonic boundary layer is indeed stabilized, and
the transition Reynolds number is increased (transition is delayed), just as ob-
served in the low-speed case. However, for highly cool walls, there is evidence of
a reversal, where the transition Reynolds number actually decrcases. As stated
by Stetson in Ref. 100, “transition reversal, as a result of wall cooling, has re-
mained a controversial subject.” In the present book, we leave it at that, also.

This ends our discussion of the physical phenomena that affect transition
at hypersonic speeds. We have highlighted only a few important trends—there
are many others. The reader is encouraged to examine Ref. 100 for a more
complete state-of-the-art discussion. We now proceed to examine a few methods,
albeit very imprecise, for the prediction of transition.

Prediction of Transition

As unknown and tenuous as the phenomenon of transition is, in applied aero-
dynamics it is vital to have some engineering means of predicting the transition
Reynolds number, even though it may be highly approximate. Onc prediction
method that has been used for hypersonic transition is based on the transition
Reynolds number referenced to the boundary layer momentum thickness 0,
where 0 is defined as (see, for example, Ref. 5)

o
0=j ﬂ(l—ﬁ>dy (6.137)
0 peue ue

In turn, the transition Reynolds number can be referenced to the value of # at
transition, 0

_ Pe ue‘?‘T»”

Re,, = (6.138)

He

An empirical correlation for hypersonic transition that has found some use is
T — 100 (6.139)

where M, 1s the local Mach number at the edge of the boundary layer. An
expression similar to Eq. (6.139) was used for the preliminary design of the
space shuttle.
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Another prediction correlation, based on the cone data of Ref. 102, has
been used recently by Bowcutt and Anderson (Ref. 81) in a study.of hypersonic
waveriders, as follows:

log,y (Rey) = 6.421 exp [1.209 x 107*M2-641] (6.140)

Eq. (6.140) is more convenient than Eq. (6.139) because it gives Re, directly,
rather than involving the momentum thickness. However, there is no reason to
favor one correlation over the other. Furthermore, neither may be appropriate
for new conditions outside the data on which they are based, and neither take
into account many of the coupled physical phenomena discussed earlier. About
all we can say in defense of Egs. (6.139) and (6.140) (or others like them) is that
they are better than nothing. In the design of hypersonic vehicles, it is usually
necessary o make some estimate of where transition occurs, and this is where
correlations such as Egs. (6.139) or (6.140) are useful. However, the user must
realize the uncertainty involved in such correlations—uncertainty that we can-
not even quantize in most applications.

We cend this discussion of transition with the following comments. The
accurate prediction ol transition at hypersonic speeds is currently one of the
leading state-of-the-art questions. Its ultimate solution will most likely come
when we obtain the ultimate understanding of the basic problem of turbulence
ttsell. In the meantime, we must continue to make engineering estimates based
on the most appropriate data avatlable. Perhaps one of the most eye-opening
aspects of the importance of transition are some recent unpublished design
studies of hypersonic transatmospheric vehicles where, depending on the criteria
used for the transition Reynolds number, the weight of the vehicles varied by as
much as 50 percent—truly a practical and driving motivation to improve our
abilitics in this area.

6.8 HYPERSONIC TURBULENT
BOUNDARY LAYER

At this point in our discussion, we now assume that the matter of where tran-
sition occurs has been reconciled, and we now ask the question: How do we
analyze the turbulent boundary layer itself? There is no precise answer to this
question; the analysis of turbulent boundary layers is in the same category as
transition, i.e., empirical data is required, and there is always an uncertainty
(sometimes substantial) in the results. A huge amount of literature has been
accumulated on turbulent boundary layer analysis, covering the flight spectrum
from incompressible to hypersonic. Whole books are devoted to this subject
(see, for example, Refs. 104 and 105). Also, an extended discussion of hypersonic
turbulent boundary layers is given in Ref. 106, Therefore, an in-depth discussion
of turbulence effects in hypersonic flow is beyond the scope of this book. In- -
stead, our intent in the present section is to indicate trends and to discuss some
pertinent results.
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It is well known that, due to the large scale turbulent motion, energy is
transmitted more readily in turbulent boundary layers than in laminar. This is
the reason for the fuller velocity profiles through a turbulent boundary layer,
and hence the larger velocity gradients at the surface, as is emphasized in any
first course in fluid mechanics. In turn, the skin friction and heat transfer are
larger, sometimes markedly larger, for turbulent in comparison to laminar flows.
These basic trends are no diflerent at hypersonic conditions than they are for
low-speed flow.

In order to include the effects of turbulence in any analysis or computa-
tion, it is first necessary to have a model for the turbulence itself. Turbulence
modeling is a statc-of-the-art subject, and a recent survey of such modeling as
applied to computations is given in Ref. 107. Again, it is beyond the scope of the
present book to give a detailed presentation of various turbulence models; the
reader is referred to the literature for such matters. Instead, we choose to discuss
only one such model here, because: (a) it is a typical example of an engineering-
oriented turbulence model, (b) it is the model used in the majority of modern
applications in turbulent supersonic and hypersonic flows, and (c) we will
discuss several applications in subsequent chapters which use this model. The
model is called the Baldwin-Lomax turbulence model, first proposed in Ref. 108.
It is in the class of what is called an “eddy viscosity” model, where the effects of
turbulence in the governing viscous flow equations (such as the boundary layer
equations or the Navier-Stokes equations) are included simply by adding an
additional term to the transport coeflicients. For example, in all our previous
viscous flow equations, g is replaced by (¢ + p4) and k by (k + k) where g
and k, arc the eddy viscosity and eddy thermal conductivity respectively—both
due to turbulence. In these expressions, ¢ and k are denoted as the “molecular”
viscosity and thermal conductivity respectively. For example, the x momentum
boundary layer equation for turbulent flow is written as

u Ju dp 0 Ju
- = ) 6.141
pu st o ot PR [(u + ) oy ( )

Moreover, the Baldwin-Lomas model is also in the class of “algebraic,” or
“zero-cquation,” models meaning that the formulation of the turbulence model
utilizes just algebraic relations involving the flow properties. This is in contrast
to one- and two-equation models which involve partial differential equations for
the convection, creation, and dissipation of the turbulent kinetic energy and (fre-
quently) the local vorticity. (See Ref. 105 for a concise description of such one-
and two-equation turbulence models.)

The Baldwin-Lomax turbulence model is described below. We give just a
“cookbook™ prescription for the model; the motivation and justification for the
model are described at length in Ref. 108. This, like all other turbulence models,
is highly empirical. The final justification for its use is that it yields reasonable
results across a wide range of Mach numbers, from subsonic to hypersonic. The
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model assumes that the turbulent boundary layer is split into two layers, an
inner and an outer layer, with different expressions for gy in each layer:

) ) <y .
g = {(/:ll)ulncr} = Verossover (6142)

(“'I‘)uulcr y = Yerossover
where y is the local normal distance from the wall, and the crossover point from
the inner to the outer layer is denoted by Yergesover- BY definition, Y o.eover 15 that

point in the turbulent boundary layer where (gtg)ou., becomes less than (z;)
For the inner region;

inner*

(tr)ioner = P x| (6.143)

[ = ky|:l —exp (]yjﬂ (6.144)

yo o NPT (6.145)
;lW

where

and k and A" are two dimensionless constants, specified later. In Eq. (6.143), @
is the local vorticity, defined for a two dimensional flow as

du Ov
= - 6.146
w oy ox ( )
For the outer region:
. (/:t’l')oulcr = pKCchwakeFKleb (6147)

where K and C,
to the function

. are two additional constants, and F .. and Fy,, are related

F(y) = _v!w![l — CXp ( _A% )] . (6.148)

liquation (6.148) will have a maximum value along a given normal distance y;
this maximum value and the location where it occurs are denoted by F,,,, and
PYuaxe Tespectively. In Eq. (6.147), F,.. is taken to be either y_, F or
Cro Vorax UTie/ F s, whichever is smaller, where C,, is a constant, and

max

Uge = /i + 02 (6.149)
Also, in Eq. (6.147), Fy, is the Klebanoff intermittency factor, given by

- y VT
Fyien(y) = [l + S'S(CK]eb ; ) jl (6.150)

The six dimensionless constants which appear in the above equations are: 4™ =
26.0, C,, = 1.6, Cyyep, = 0.3, C,,, =025, k = 0.4 and K = 0.0168, These constants
are taken directly from Ref. 108 with the understanding that, while they are
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not precisely the correct constants for most flows in general, they have been
used successfully for a number of different applications. Note that, unlike many
algebraic eddy viscosity models which are based on a characteristic length, the
Baldwin-Lomax model is based on the local vorticity w. This is a distinct advan-
tage for the analysis of flows without an obvious mixing length, such as separ-
ated flows. Note that, like all eddy-viscosity turbulent models, the value of sy
obtained above is dependent on the flowfield properties themselves (for example
@ and p); this is in contrast to the molecular viscosity u, which is solely a
property of the gas itself.

The molecular values of viscosity coeflicient and thermal conductivity are
related through the Prandtl number

e

6.151
Pr ( )

In licu of developing a detailed turbulence model for the turbulent thermal con-
ductivity k4, the usual procedure is to define a “turbulent” Prandtl number as
Pry = upc,/kr. Thus, analogous to Eq. (6.151), we have

Hrc
g ating 4 6.152
7 Pry ( )

where the usual assumption is that Pry. = 1. Therefore, g, ts obtained from a
given eddy-viscosity model (such as the Baldwin-Lomax model), and the corre-
sponding k, is obtained from Eq. (6.152).

The Baldwin-Lomax model discussed above is just one of many eddy-
viscosity turbulence models that have been advanced over the years. For basic
flows, such as flow over a f{lat plate, many of these models are quite accurate.
Let us examine in more detail results obtained for hypersonic turbulent flow
over a flat plate. Such solutions can be obtained by utilizing the boundary layer
equations [Eqgs. (6.27)-(6.30)] with dp/0x = 0 and with the transport properties
i and k directly replaced by the sums (¢ + py) and (k + ky) respectively. Results
for the variation of ¢, with Mach number are given in Fig. 6.29, obtained from
Ref. 107. Here, calculations based on several turbulence models are made: an
algebraic (zero-equation) model from Ref. 104; a two-equation model from Ref.
109; and two different Reynolds stress equations (which provide the turbulent
stresses directly in the turbulent mean momentum equations) from Refs. 109 and
110. The solid curve in Fig. 6.29 is a prediction by Van Driest (Ref. 111) which
is within 10 percent of available experimental data, and which can be considered
a standard for comparison. Note that all the models give essentially the same
results. Also, note the important physical variation shown in Fig. 6.29, namely
that the effect of increasing Mach number is to decrease ¢;. This is the same
trend as shown for laminar flow in Fig. 6.10. However, comparing Figs. 6.10 and
6.29, we note that the Mach number effect is stronger for turbulent flow; the
turbulent ¢, decreases faster with Mach number in comparison to the laminar
results. This trend is further emphasized by the heat transfer results shown in
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FIGURE 629
Eifects of compressibility on turbulent skin friction on a flat plate: adiabatic wall, Re, = 107, (From
Marvin, Ref. 107.)

Fig. 6.30, obtained from Ref. 92, Here, the Stanton number is plotted versus Re,
with Me as a parameter; lines for both laminar and turbulent flow are shown.
Note in Fig. 6.30 that for a given Re the Mach number effect is stronger on the
turbulent results in comparison to the laminar results. Also note that for a given
Me and Re, the turbulent values of C, are considerably larger than the laminar
results, which demonstrates the importance of predicting hypersonic turbulent
flows.
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FIGURE 6.30
Station number as a funcion of Reynolds and Mach numbers for an insulated flat plate. (From Van
Driest, Ref. 92)
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Some typical experimental heat transfer data for hypersonic viscous flow
over a sharp cight-degree cone at zero angle of attack is shown in Fig. 6.31, ob-
tained from Ref. 102. The {ree stream Mach number is 10, and the unit Reynolds

number of 2.1 x 10%/ft. Here, C,,\/Re_\ is plotted versus the running length x
along the surface of the cone, expressed in terms of the Reynolds number,
Re, = p.u,x/g.. At values of Re, of 3 x 10° or less, the flow is laminar, and the
measured Stanton number agrees very well with a theoretical laminar prediction
(shown by the dashed line). Transition takes place above Re, = 3 x 10°, with
fully turbulent flow achieved about Re, = 7 x 10, This figure is shown for sev-
eral reasons: (1) to illustrate some classical hypersonie results for heat transfer
to a basic cone; (2) to further illustrate the phenomena of hypersonic transition;
and (3) to demonstrate how much turbulent flow can increase the local heat
transfer rate—in the case shown here the increase is over a factor of three.

This concludes our discussion of hypersonic turbulent boundary layers.
The subject is virtually inexhaustible, and our purpose here has been to give
only its flavor. We have discussed a frequently used eddy-viscosity turbulence
model, namnely the Baldwin-Lomax model, and we have shown some results for
hypersonic turbulent flows over flat plates and cones. These basic flows were
chosen to illustrate the trends associated with high Mach number effects on
turbulent boundary layer flows. For more dctailed information on more com-
plex flows, the reader is referred to the literature. In addition, for an in-depth
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FIGURE 6.31
Stanton number for a sharp cone, , = 8, M, = 10, Re/ft = 2.1 x 10° (From Ref. 102)
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study of the general aspects ol hypersonic turbulent boundary layers, make cer-
tain to read the reflerences given in this section.

6.9 THE REFERENCE TEMPERATURE METHOD

In this section we discuss an approximate engineering method for predicting
skin friction and heat transfer for both laminar and turbulent hypersonic flow. It
is based on the simple idea of utilizing the formulas obtained from incompress-
ible flow theory, wherein the thermodynamic and transport properties in these
formulas are evaluated at some reference temperature indicative of the tem-
perature somewhere inside the boundary layer. This idea was first advanced by
Rubesin and Johnson in Ref 112, and was modified by Eckert (Ref. 113) to
include a reference enthalpy. In this fashion, in some sense the classical incom-
pressible formulas were “corrected” for compressibility effects. Reference temper-
ature (or reference enthalpy) methods have enjoyed frequent application in
engineering-oriented hypersonic analyses, because of their simplicity. For this
reason, we bricfly describe the approach here.

Consider the incompressible laminar flow over a flat plate. The local skin
friction and heat transfer coefficients, obtained from classical theory (see Ref. 83)
are respectively

664
¢ = 976:5 (6.153)
\/Rex
Cy= 9& pr-23 (6.154)

\/ Re,

where Re and Pr are based on properties at the edge of the boundary layer, that
is, Re, = p t,x/p, and Pr=p, c, (k.

Now consider the compressible laminar flow over a flat plate. In the refer-
ence temperature method, the compressible local skin friction and heat transfer
coefficient are given by expressions analogous to Egs. (6.153) and (6.154)

.664 .
cp= 0 szm (6.155)
\/Re;‘.‘
0.332
Cy= (P23 (6.156)
\/Re;“
where ReX and Pr* are evaluated at a reference temperature T*. That 1s,
*
Rex = P 4eX (6.157)
u*
* ¥
pr=tSr (6.158)
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where p*, p* ¢* and k* are evaluated for the reference temperature 7*. From
Sec. 6.5 we know that, for compressible flow, ¢, and Cy, depend on M, and
T,/T.. Hence T* must be a function of M, and T,/T,. From Refs. 83 and 113,

this function is

T* T,
— =1+4+0032M2+038 ¥ —1 6.159

e e

Return to Fig. 6.10, where the solid curves give the exact solutions for compress-
ible laminar flow over a flat plate. The approximate results obtained from the
reference temperature method using Eq. (6.155) where T* is given by Eq. (6.159)
are shown as dashed curves in Fig. 6.10. For most of the curves, the reference
temperature method falls directly on the exact results, and hence no distinction
can be made between the two sets of results; only for the insulated plate is there
some discernible difference, and that is small.

To apply the above results to cones, simply multiply the right-hand sides
of Eqs. (6.155) and (6.156) by the Mangler fraction, \ﬁ It makes sense that,
everything else being equal, the skin {riction and heat transfer to the cone should
be higher than the flat plate. For the cone, there is a three-dimensional relieving
effect which makes the boundary layer thinner. This in turn results in larger
velocity and temperature gradients throughout the boundary layer including at
the wall, and hence yields a higher skin friction and heat transfer than in the
two-dimensional boundary layer over a flat plate. Also, the idea of the reference
temperature method has been carried over to general three-dimensional flows
simply by defining Re* as the running length Reynolds number along a stream-
line (where now x denotes distance along the streamline). This idea is discussed
by Zoby, Moss and Sutton in Rel. 114. Moreover, in Refl. 114 a modified refer-
ence temperature approach using the Reynolds number based on momentum
thickness is employed. See Ref. 114 for details.

For turbulent flow over a flat plate, a reasonable incompressible result is
(see Ref. 83)

0.0592
Cr= —=5 6.160
s (Rex)o.z ( )
Carrying over the reference temperature concept to the turbulent case, the com-
pressible turbulent flat plate skin friction coefficient can be approximated as

0.0592

where Re* is evaluated at the reference temperature given by Eq. (6.159). The
turbulent flat plate heat transfer can be estimated from a form of Reynolds
analogy, written as

Cy=2L (6.162)
2s
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where 5 is defined as the Reynolds analogy factor. For reasonable values of s for
turbulent flow, see Van Driest (Ref. 92).

We end this section with the {ollowing caution. The reference temperature
method is approximate. Because of its simplicity along with (sometimes) reason-
able accuracy, it is useful for preliminary design purposes. In Sec. 6.10, more will
be suaid about its accuracy within the [ramework of approximate three-
dimnensional solutions. It is interesting, however, that Dorrance (Ref. 106) has
shown in the special case of the flat plate that the evaluation of the reference
temperature is indeed an accurate representation, falling out of the detailed,
exact laminar boundary layer theory discussed in Sec. 6.5. In general, however, it
must be realized that the best obtainable accuracy in predicting skin friction and
heat transfer over general shapes can only be obtained by a detailed numerical
solution of the governing boundary layer equations (such as discussed in Sec.
6.6), at the cost of considerable complexity and computer time.

6.10  HYPERSONIC AERODYNAMIC HEATING:
SOME COMMENTS AND APPROXIMATE RESULTS
APPLIED TO HYPERSONIC VEHICLES

The present chapter serves as an introduction to the basic physics of hypersonic
viscous flow, with primary concentration on boundary layer theory. We have
discussed such diverse topics as exact solutions to hypersonic laminar boundary
layers, the uncertainties and approximations associated with transition and tur-
bulence, and an approximate “engineering” method of predicting local skin [ric-
tion and heat transfer. In the process we have discussed many detailed fluid
dynamic aspects of hypersonic boundary layers. Therefore, it is appropriate at
this stage in our discussion to recall the basic practical reasons for studying
hypersonic viscous flows, as discussed in Sec. 6.1; namely, from the practical
aspect of the design of hypersonic vehicles and facilities, we are vitally concerned
with the prediction of surfuce heat transfer and skin friction. Moreover, of these
two items, surface heat transfer is usually the dominant aspect that drives the
design characteristics of conventional hypersonic vehicles, although skin friction
is, very important in tailoring the aerodynamic efliciency of slender vehicles.
Because of the importance of aerodynamic heating at hypersonic speeds, the
present section provides some elaboration on that topic.

Section 6.1 discussed some of the practical motivation for the concern
about aerodynamic heating to hypersonic vehicles; at this stage, the rcader
should review Sec. 6.1 before progressing further. In particular, in Sec. 6.1 some
cstimates of the stagnation point heating to a transatmospheric vchicle were
given, and compared to that for the space shuttle (see Fig. 6.1). We are now in a
position to understand why the aecrodynamic heating becomes so large at hyper-
sonic specds, as demonstrated by the following reasoning. The Stanton number -
was defined by Eq. (6.63) in terms of the local properties at the outer edge of the
boundary layer. If we take the case of a flat plate parallel to the flow, these local
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properties are frec stream values, and Cy can be written as

A
or
G = P Voo (o — 1,)Cy (6.163)
Assuming an approximate recovery factor of unity, h,, = hy, where h, is the

total enthalpy, defined as

2

ho = hy, -+ % (6.164)

’
At hypersonic speeds, V2/2 is much larger than h,,, and from Eq. (6.164), h is
essentially given by

V2

hy & =2 6.16
o & = (6.165)

Moreover, the surface temperature, although hot by normal standards, still must
remain less than the melting or decomposition temperature of the surface mate-
rial. Hence, the surface enthalpy h, is usually much less than h, at hypersonic
speeds.

hy > h,, (6.166)

Combining Egs. (6.163) through (6.166), we obtain the approximate relation
that

qux3pV3 Cy (6.167)

The main purpose of Eq. (6.167) is to demonstrate that aerodynamic heating
increases with the cube of the velocity, and hence increases very rapidly in the
hypersonic flight regime. By comparison, aerodynamic drag is given by

D=1p V2SCp (6.168)

which increases as the square of the velocity. Hence, at hypersonic speeds,
aerodynamic heating increases much more rapidly with velocity than drag, and
this is the primary reason why aerodynamic heating is a dominant aspect of
hypersonic vehicle design. Moreover, [rom Eq. (6.167), we can understand why
Fig. 6.1 indicates that the major aerodynamic heating for a transatmospheric
vehicle is encountered during ascent rather than during entry. Such a vehicle
will accelerate to orbital velocity within the sensible atmosphere (using air-
breathing propulsion), hence high velocity will be combined with relatively high
P which from Eq. (6.167) combine to yield very high heating values. In con-
trast, on atmospheric entry, the transatmospheric vehicle will follow a gliding
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Might path where deceleration to lower velocities will take place at higher alti-
tudes, hence resulting in lower heating rates than are encountered during ascent.
Please note that the above discussion is for general guidance only; Eq. (6.167) is
approximate only, and morcover Cy and Cp in Egs. (6.167) and (6.168) respec-
tively both decrease as M, increases (a general trend we have established
frequently in our previous discussions). However, the trends shown by these
cquations are correct, and they clearly demonstrate why aerodynamic heating
progressively becomes more important, and indeed dominant, as the hypersonic
fight regime i1s more deeply penetrated.

Now that we have established the importance of acrodynamic heating, it 1s
instructional to examine various prediction methods for estimating the heat
transfer to hypersonic vehicles. Within the context of the ideas presented in the
present chapter, the most precise method would be as follows:

1. Calculate the inviscid three-dimensional flow over the vehicle by means of an
appropriate finite-different technique, such as described in Secs. 5.3 and 5.5.
The surface-flow properties from such a calculation will provide the outer
edge boundary conditions for a boundary layer caleulation.

2. Using these outer edge conditions, calculate the boundary layer profiles by an
“exact” finite-difference method, such as described in Sec. 6.6. An important
distinction must be made here, however. In Scc. 6.6, only two-dimensional
boundary layers were discussed. These two-dimensional calculations could be
employed in an approximate sense by following a surface streamline gener-
ated by the three-dimensional inviscid flow calculation, and ignoring any
cross-flow gradients perpendicular to the streamline. However, in regions of
large cross-flow gradients, such a “locally two-dimensional” boundary layer
calculation is certainly not appropriate. The only true “exact” method would
be to carry out a three-dimensional boundary layer calculation. We have not
discussed such thiree-dimensional boundary layer calculations—they are be-
yond the scope of this book. Such calculations are a state-of-the-art research
problem today. It is not just a simple matter of adding the third dimension to
the boundary layer equations, and then routinely proceeding with a finite-
difference solution. Any numerical solution of the three-dimensional bound-
ary layer cquations must pay close attention to various “regions of influence”
somewhat analogous to those encountered in a method of characteristics
analysis. However, thrce-dimenstonal boundary fayer solutions can, with
some effort, be carried out (see, for example, Ref. 83). In any event, the locally
two-dimensional or precise three-dimensional boundary layer solutions will
provide detailed flowfield profiles through the boundary layer including of
course the local temperature gradient at the surface.

3. Using this local temperature gradient at the surface, the local heat transfer
rate can be caleulated: g,, = k (0T/3y),,-

The application of this approach to calculating the aerodynamic heating distri-
>ution over a three-dimensional hypersonic vehicle, although feasible, is costly
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in terms of the large amount of computer time involved. Moreover, today—if
such a detailed calculation is desired—a solution of the complete Navier-Stokes
equations such as described in Chap. 8 might be the more appropriate choice.
Such matters will be discussed in detail in Chap. 8.

Solutions for the aerodynamic heating distributions as described above are
not yet practical for engineering analysis and design, where a large number of
different cases are examined. For such applications simpler and, hence, more
approximate methods are needed. In the remainder of this section, several such
approximate methods are discussed.

In the extrcme, perhaps the simplest method for estimating hypersonic
aerodynamic heating 1s to use a generalized form of Eq. (6.167) as

q.=phV¥C (6.169)
Such a form was used in Ref. 80 for a preliminary analysis of aerodynamic
heating to a transatmospheric vehicle, and was the basis for the results shown in

Fig. 6.1. For these calculations, the following values for N, M and C were used,
where the units for q,, p,, and V,, were W/cm?, m/s, and kg/m? respectively.

Stagnation point :

h
M =3, N =05, C=183x IO_BR”/Z(l—r“')
To
where R is the nose radius in meters, and h, and h; are the wall and total
enthalpies respectively. With these values of M, N and C, there is a direct simi-
larity between the approximate Eq. (6.169) and the exact result given by Eq.
(6.106). (The demonstration of this similarity is left as a homework problem.)

Laminar flor plate :

M =232 N =05 C = 2.53 x 1077 (cos ¢)*/? (sin ¢) x’m(l — l;"’>
1o

where ¢ 1s the local body angle with respect to the free stream, and x is the
distance measured along the body surface in meters.

Turbulent flat plate :

N =038
For V, < 3962 m/s
M =337
T,\ "' h
C =3.89 x 1078 (cos ¢)*78 (sin ¢)*0 x; /5 2 1 —111-%
556 hy

For V,, > 3962 m/s
M =37

C =22 x 1077 (cos ¢)*>°8 (sin ¢)!€ x;‘/5<1 — 111 }i>

hy
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where x; is the distance measured along the body surface in the turbulent
boundary layer.

The above is an extreme example of an engineering method for estimating
hypersonic aerodynamic heating, requiring the least amount of work and detail.
The validity of these correlations is “reasonable” as long as the flight conditions
are such that boundary layer theory is valid. They are useful for preliminary
analysis, and are not recommended for more detailed work. They are presented
here only as an example of the most approximate method for estimating hyper-
sonic acrodynamic heating, and for providing information on how the results
shown earlier in Fig. 6.1 were obtained.

Note that the above method does not directly incorporate the variation of
local inviscid flow properties along the surface. In contrast, the use of the refer-
ence enthalpy approach, described in Sec. 6.9, has this advantage. An example of
an improved engineering method for predicting hypersonic aerodynamic heating,
albeit still approximate, is the work of Zoby and Simmonds (Rel. 115). Here, the
inviscid flow over a hypersonic vehicle is calculated using a version of the ap-
proximate thin shock layer analysis of Maslen, the elements of which are given
in Sec. 4.9. The local aerodynamic heating distributions are then obtained from
standard incompressible formulas modified for compressible conditions by
Eckert’s reference enthalpy relation (see Section 6.9). Sample results are shown
in Fig. 6.32, which gives the tocal laminar Stanton number (normalized by the
stagnation point value) for the windward centerline for a blunt 25 degree cone
at various angles of attack. The free-stream Mach number is 7.77. In this figure,
s is the distance along the surface of the cone from the nose, and R is the nose
radius. The open symbols are experimental data obtained from Ref. 116, and the
curves are from the approximate calculations of Ref. 115. Reasonable agreement
1s obtained between the calculations and experiment. Note the expected physical

o, deg data Predicted resulis
0 le) M, = 177
5 o — y=14
10 0 e — hofhy = 0.41
0.4 . = 25 deg.
. 0.3
Cy
C
Hy 02
0.l
L 1 L o | | | ! !
0 1 2 3 4 5 6 7 8 9

FIGURE 6.32
Comparison of predicted (Ref. 115) und measured (Ref. 116) laminar heat transfer rates on a blunt
cone, (From Zohv and Simmonds, Ref. 115.)
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M, =915
a =348

FIGURE 6.33
Calculated streamline pattern on the space shuttle. (From DeJarnette, et al., Ref. 118.)

trends shown in Fig. 6.32, namely: (1) heat transfer decreases with distance from
the nose, and (2) heat transfer increases with increasing angle of attack along the
windward centerline.

A more complex heat transfer calculation applied to the space shuttle
has been carried out by Hamiiton et al. (Ref. 117). The exact three-dimensional
inviscid flow is calculated by the time-dependent finite-diflerence approach dis-
cussed in Sec. 5.3, yielding an inviscid streamline pattern over the windward
surface of the space shuttle as shown in Fig. 6.33 for M = 9.15 and a = 34.8°.
Then, following each streamline, the modified reference temperature method of
Ref. 114 is used to calculate the aerodynamic heating distributions. The basic
ideas of Ref. 114 have been discussed in Sec. 6.9, hence no further elaboration
will be given here. Consider a “midwing” chord of the space shuttle located at
2x/h = 0.5, as shown in Fig. 6.34. Also shown in Fig. 6.34 is the irregular pattern
of transition observed from shuttle flight test data. The calculated streamwise
heat transfer distributions along the chord at 2x/b = 0.5 are shown in Fig. 6.35,
obtained from the method of Rel. 114. Both laminar and turbulent calculations
are shown by the solid curves, as reported in Ref. 117. The flight test data are
given by the open circles. These data are bracketed by the laminar and turbulent
calculations. Near the leading edge, good agreement is obtained with the lam-
inar calculations, and near the trailing edge, good agreement is obtained with
the turbulent calculations. This graphically demonstrates the accuracy that can
be obtained with approximate heat transfer calculations in complex flows. The
behavior of the flight test data in the transition region, which at first glance
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M, =915

o = 34.8°
e~ 2x/h = 0.5
e 2x/b = 0.8

Start of transition

~— End of transition

FIGURE 6.34
Measured transition region on the space shuttle wing, from the STS-2 flight. (From Ref. 118.)-

0101~ Turbulent
008} - M, =915
o= 34.8"
0.06- o P = 100 N/m?
o o T, = 260 K
0.041 - Re, = .2.4 x 10°/m
o STS-2 flight
a data
MW /m? ——— Rel 114
— Q
002 Laminar
0.01f-
0.008—
0006l 1 ! ! | J
0 0.2 0.4 0.6 0.8 1.0
2/C

FIGURE 6.35
Streamwise distribution of heating on the wing of the space shuttle at 2x/b = 0.5, where 2x/b is the
spanwise location shown in Fig. 6.34. (From Ref. 117.)
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appears irregular (first laminar, then transitional, then laminar, then transitional,
then laminar again, finally approaching fully turbulent flow at the trailing edge),
is indeed totally consistent with the observed transition pattern shown in Fig.
6.34.

This is a good ending point for our discussion of approximate hypersonic
heat transfer calculations. There are other approximate methods which have
been developed over the past years; this section has endeavored to indicate only
a few recent approaches. An excellent and authoritative review of approximate
aerodynamic heat transfer methods has been recently published by DeJarnette et
al. in Ref. 118, which the interested reader is encouraged to study carefully.
Again, the purpose of this section has been to serve as a counterpoint to our
previous discussions concerning “exact” hypersonic boundary layer calculations,
and to emphasize the usefulness of approximate heat transfer analyses for engin-
eering studies. The final choice of an “exact” or an “approximate” method for
calculating hypersonic aerodynamic heating depends on the problem, the need
for accuracy, and the resources available.

6.11 ENTROPY LAYER EFFECTS
ON AERODYNAMIC HEATING

Consider the inviscid hypersonic flow over a blunt-nosed body, such as sketched
in Fig. 6.36. The surface streamline, which has passed through the normal por-
tion of the bow shock wave, is indicated by the dashed line. Since the flow is
inviscid and adiabatic, the entropy is constant along this streamline, and equal
to the entropy behind a normal shock wave. According to the usual boundary
layer method, this streamline with its normal shock entropy would constitute
the boundary condition at the outer edge of the boundary layer. On the other

Normal shock
entropy

M, > 1

FIGURE 6.36
Illustration of the surface streamline containing the normal shock entropy.



296 vISCOUS HYPFRSONIC 1LOW

hand, return to Fig. 1.14 with the attendant discussion in Chap. | concerning
the entropy layer, Recall that for some distance downstream of the blunt nose
the thin boundary layer will be growing inside the entropy layer, and then the
boundary layer will eventually “swallow” the entropy layer far enough down-
stream. In both cases, it is clear that the entropy at the outer edge of the bound-
ary layer will nor be the normal shock entropy. Therefore, the conventional
boundary layer assumption that the outer edge boundary condition is given by
the inviscid surface streamline as shown in Fig. 6.36 when dealing with blunt-
nosed hypersonic bodies is not appropriate.

The interaction of the entropy layer and the boundary layer has been a
challenging aerodynamic problem for years Within the framework of boundary
layer analysis, current practice is to estimate the boundary layer thickness J, and
then utilize the inviscid-flow properties located a distance é from the wall as
outer-boundary conditions for the boundary layer. This approximate approach
has been used successfully by Zoby, Hamilton and colleagues in Refls. 114, 115
and 117. The entropy layer can have an appreciable effect on the prediction of
hypersonic aerodynamic heating. This is dramatically shown in Fig. 6.37, ob-
tained from Refs. 118 and 119. Here, the aerodynamic heat transfer distribution
along the space shuttle windward ray is shown at the velocity and altitude cor-
responding to maximum heating along the entry trajectory. The open circles are
experimental data extrapolated from wind tunnel data. The various curves are
predictions of the heating distributions from Refs. 120 and 121, both making
two sets of calculations, first assuming normal shock entropy at the outer edge
of the boundary layer, and then treating the variable entropy associated with the
entropy layer/boundary layer interaction. The solid circles are from the calcula-
tions of Refl. 119, which also account for the entropy layer. Note two important
aspects from Fig. 6.37: (1) the presence of the entropy layer increases the pre-
dicted values of ¢, by at least 50 percent—a nontrivial amount, and (2) the
taking into account of the entropy layer by using boundary layer outer-edge
properties associated with the inviscid flow a distance J from the wall gives
good agreement with the experimental data. '

Clearly, the presence of the entropy layer on a blunt-nosed hypersonic
body has an important eflect on aerodynamic heating predictions using bound-
ary layer techniques. However, the simple method stated above appears to be a
reasonable approach to including the effect of the entropy layer. Indeed, the heat
transfer predictions shown previously in Figs. 6.32 and 6.35 take into account
the entropy layer as described above, and reasonable agreement with wind tun-
nel and flight test data is obtained.

Finally, the problems discussed in this section concerning the entropy layer
are important for boundary layer calculations. In contrast, when the entire
shock layer is treated as viscous from the body to the shock wave, the exphcit
treatment of the entropy layer is not needed. For such viscous shock layers, the
interaction between the entropy layer and the shock layer “comes out in the
wash™, no separate treatment is required, because it is contained within
the framework of a fully viscous calculation. Such fully viscous flow calculations
are discussed in Chap. 8.
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FIGURE 6.37
Comparison of predicted shuttle windward-ray heat transfer distributions; illustration of 1he entropy
layer effects. (From Ref. 118))

6.12 SUMMARY

In the present chapter, we have discussed some basic physical aspects of hyper-
sonic viscous flow, and have concentrated on the conventional boundary layer
concept with associated results at hypersonic conditions. Relerring again to our
roadmap in Fig. 1.23, we have covered the first five items listed under viscous
flows, ranging from basic aspects to approximate engineering methods. Examine
these items in Fig. 1.23, and make certain that you feel comfortable with the
associated material in this chapter before you progress further. In the next two
chapters, we will treat hypersonic viscous flows by more general and modern
(and hence more accurate) methods. However, the boundary layer theory and
results discussed in the present chapter constitute the “bread and butter” of
many hypersonic viscous flow applications, and they provide a foundation on
which the understanding of hypersonic viscous flow is built. Therefore, in the
following paragraphs it is useful to highlight some of the material we have dis-
cussed.
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The Navier-Stokes equations, Egs. (6.1)-(6.5), are the fundamental govern-
ing equations for viscous flow. These are coupled nonlinear partial differential
equations, difficult to solve by any approach other than detailed numerical so-
lutions (to be discussed in Chap. 8). The boundary layer equations, obtained
from the Navier-Stokes equations by an order-of-magnitude reduction analysis,
arc stmpler to solve, and serve as a classical starting point for the analysis of
viscous {flows. For two-dimensional flow, the boundary layer equations are:

Hp) | Aor)

Continuiry (6.27)
ox Dy
] ] d d( @
x Momentum  pu ;% + pv ;; = — ({Ej + 3 (H 5;) (6.28)
ap
v Momentum —-=40 (6.29)
ay
oh oh 0/ oT dp u\?
Lnergy MR A Pepf X 6.30
neryy pu + pv 3 0})( (7y> tu + }l<0y> (6.30)

For hypersonic flow, the constant pressure condition given by Eq. (6.29) can be
relaxed; it is appropriate to allow a normal pressure gradient through a hyper-
sonic boundary layer without invalidating the boundary layer concept.

By transforming the boundary layer equations through the Lees-Dorodnit-
syn transformation,

&= j Pl dx (6.33)
0
u, [*
=/ j pdy (6.34)
\/25 0

a form of the boundary layer equations is obtained as displayed in Egs. (6.55)
and (6.58). In turn, these equations lead to self-similar solutions for the special
cases of the flat plate and stagnation point, Defining the skin friction coefficient
as

T
= 6.59
T ipat 659
the Nusselt number as
4,X
Nu=-— % e 6.62
YT (T~ T (062
and the Stanton number as
qw

Co - _ 6.63
" peue(haw - hw) ( )
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where the Nusselt and Stanton numbers are alternative heat transfer coeflicients
related by Nu = C,, Re Pr, we find that

c,z\/if;i%:{/% 6.71)
and
_ bV ke he g0
" b Cpu p Ui — ) JRe
where [’ = u/u, and ¢ = h/h,. The self-similar solutions for the transformed

boundary layer equations yield numbers for f”(0) and ¢(0), giving the following
laminar flow results:

6.77)

_ FM,, Pr,y, TJT.)

Flat plate ¢y (6.76)
Re,
G(M,, Pr,y, T,/T,
Cy= _(_,f,_u_) (6.81)
Re,

Stagnation point

(Cylinder) g, = 0.57 Pr06 (p_i,)!/? \/% (he —h,)  (6.106)

d
(Sphere) 4, = 0.763 Pr™"%(p 1) [ (= hy)  (6.111)
X

The stagnation point heat transfer for a sphere is larger than that for a cylinder
due to the three-dimensional relieving effect. At a stagnation point, the skin
friction is zero, For hypersonic flow, the velocity gradient du,/dx is given from

Newtonian flow as
du, 1 (2(p. — py)
e s 121

dx R\/ Pe ®.121)

From this, we obtain the important result that

1
Gy o€ —— (6.122)

JR

In general. boundary layers encountering arbitrary streamwise gradients of
velocity, pressure and temperature at the outer edge are nonsimilar. For non-
similar boundary layers, several methods of solution have been developed, in-
cluding “local similarity,” the difference-differential method, and finite-difference
methods, the latter being the standard approach today.

Detailed boundary layer solutions such as mentioned above yield the flow-
field profiles through the boundary layer, as well as the velocity and temperature
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gradients at the surface, hence the surface skin [riction and heat transfer. These
detailed solutions frequently require extensive computer resources. For engineer-
ing preliminary analysis, simplified, more approximate methods are useful for
rapid estimation of skin friction and aerodynamic heating. The reference temper-
ature (or reference enthalpy) method is an excellent example of such an approxi-
mite approach. Calculations as elaborate as the estimation of space shuttle
three-dimensional heat transler distributions have been made using the reference
temperature concept.

Finally, the aspects of hypersonic transition and turbulent flow are ex-
tremely important for vehicle design and analysis. Sections 6.7 and 6.8 discuss
these matters, emphasizing the basic aspects of transition and turbulence at hy-
personic speeds, and underscoring the great uncertainties that still exist in our
predictions of such phenomena.

PROBLEMS

6.1. Starting with the Navier-Stokes equations in dimensional form, derive Eqgs.
(6.7)-(6.10).

6.2. Derive Eq. (6.58).
6.3. Derive Eqs. (6.109) and (6.110) for an axisymmetric stagnation point.

6.4. Consider the hypersonic laminar flow over a flat plate. When Pr =1, show that
enthalpy is a function of local velocity; i.c., show that h = h(u). Obtain this function.

6.5. Show similarities between the approximate Eq. (6.169) and exact results.
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HYPERSONIC
VISCOUS
INTERACTIONS

It is yet too early to describe other promising methods of inquiry
by which knowledge of the size and texture of the boundary layer
may he obtained. It seems, however, that we are on the threshold
of a new domain of great promise; research is needed, first for the
advancement of our knowledge and then for its application.

Leonard Bairstow, English Aerodynamicist, 1923

Interact—to act on each other.

From The American Heritage Dictionary
of the English Language, 1976
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7.1 INTRODUCTION

In contrast to the above statement by the eminent British aerodynamicist,
L. Bairstow, in 1923, it is no longer “too early to describe other promising
methods™ of studying viscous flows. Indeed, in the modern world of hypersonics,
it is mandatory that we go beyond the original boundary layer concept as intro-
duced by Prandtl in 1904. The material in this chapter is one such example.
Here, we will examine two important flow problems where the viscous boundary
layer changes the nature of the outer inviscid flow, and in turn these inviscid
changes feed back as changes in the boundary layer structure. This gives rise o
phenomena classified as viscous interactions. In hypersonic flow, there are two
important viscous interactions:

1. Pressure interaction, due to the exceptionally thick boundary layers on sur-
faces under some hypersonic conditions.

2. Shock-wave/boundary-layer interaction, due to the impingement of a strong
shock wave on a boundary layer.

The first item, pressurc interaction, is frequently identified in the hypersonic
literature as simply “viscous interaction.” This is the physical effect described in
Sec. 1.3C, and sketched in Figs. 1.15 and 1.16. This material from Chap. 1
should be reviewed at this stage before progressing further. The viscous inter-
action described in Sec. 1.3C constitutes the subject for most of the present
chapter.

The classic hypersonic interaction between the outer inviscid flow and the
boundary layer is due to the very large boundary layer thicknesses which can
occur at hypersonic speeds. Indeed, it was stated in Sec. 1.3C that for a flat plate
laminar boundary layer,  grows as

2
d o Jv{‘,' : (1.1

\/Re,;

Hence, for cqual Reynolds number, 8 grows as the square of the Mach number.
We are now in a position to prove this, as follows. For a laminar boundary
layer on a flat plate, the sell-similar solution described in Sec. 6.4 leads to the
familiar result that

sac 1.2)

\/Re

Duc to intense viscous dissipation in hypersonic boundary layers, the tempera-
ture can vary widely. In turn, p and u can be strongly variable throughout the
boundary layer. Let us choose to evaluate the Reynolds number in Eq. (7.2)
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using p,, and p,, at the wall. Then,

X
0 of —————
vV pwuex/“w

or

Sor X J& Jl (1.3)
SPettexfit N Pu N Fe
From the equation of state, assuming p, = p, = p = constant through the

boundary layer,

pe _p. T, T,

fe w _w 7.4
pe Pl T, 74
Also, assuming a linear dependency of 4 on T,
te T, (15)
po T '

Combining Egs. (7.3)-(7.5), we have

Sor X (TW> 1.6)
where Re is the conventional Reynolds number based on properties at the outer

edge of the boundary layer, that is, Re = p,u,x/u,. Assuming an adiabatic wall
with recovery factor r = 1,

! —1
e Ty v (1.7)

TM_TE)_V_I 2
TS g M (18)

(1.9)

Clearly, the thickness grows as the square of the Mach number, and therefore
hypersonic boundary layers can be orders of magnitude thicker than low speed
boundary layers at the same Reynolds number.

This thick hypersonic boundary layer displaces the outer inviscid flow,
changing the nature of the inviscid flow. For example, inviscid flow over a flat
plate is sketched in Fig. 7.1a; the streamlines are straight and parallel, and the
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(b) Viscous flow

FIGURE 7.1
Hiustration of pressure distributions over a flat plate. () inviscid flow; () viscous flow.

pressure on the surface is constant (as sketched above the streamlines). In con-
trast, for hypersonic viscous flow with a thick boundary layer, the inviscid
streamlines are displaced upward, creating a shock wave at the leading edge as
sketched in Fig. 7.1h. Moreover, the pressure varies over the surface of the flat
plate, as sketched above the flow picture in Fig. 7.1b. This is the source of the
viscous interaction. The increased pressure (hence increased density) tends to
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make the boundary layer thinner than would be expected (although ¢ is still
large on a relative scale), and hence the velocity and temperature gradients at
the wall are increased. In turn, the skin friction and heat transfer is increased
over their values that would exist if a constant pressure equal to p, were
assumed. In the viscous interaction, the pressure increase (and the resulting ¢,
and (), increases) become more severe closer to the leading edge. We will soon
see that the magnitude of the viscous interaction increases as Mach number is
increased and Reynolds number is decreased. Therefore, viscous interaction
effects are important for slender hypersonic vehicles flying at high Mach
numbers and high altitudes.

72 STRONG AND WEAK VISCOUS INTERACTIONS:
DEFINITION AND DESCRIPTION

Consider the sketch shown in Fig. 7.2, which illustrates the hypersonic viscous
flow over a flat plate. Two regions of viscous interaction are illustrated here—
the strong interaction region immediately downstream of the leading edge, and
the weak interaction region further downstream. By definition, the strong inter-
action region is once where the following physical effects occur:

1. In the leading edge region, the rate of growth of the boundary layer displace-
ment thickness is large, that is, dd*/dx is large.

2. Hence, the incoming freestream “sees” an eflective body with rapidly growing
thickness: the inviscid streamlines are deflected upward, into the incoming
flow, and a shock wave is conscquently generated at the leading edge of the
flat plate, ie, the inviscid flow is strongly affected by the rapid boundary
layer growth.

3. In turn, the substantial changes in the outer inviscid flow feedback to the
boundary layer, affecting its growth and properties.

This mutual interaction process, where the boundary layer substantially affects
the inviscid flow, which in turn substantially affects the boundary layer, is called
a strony viscous interaction, as sketched in Fig. 7.2,

In contrast, further downstream a region of weak interaction is eventually
encountered. By definition, the weak interaction region is one where the follow-
ing physical effects occur:

1. The rate of growth of the boundary layer is moderate, that is, dé*/dx is
reasonably small.

2. In turn, the outer inviscid flow is only weakly aflected.

3. As a result, the changes in the mviscid flow result in a negligible feedback on
the boundary layer, and this is ignored.

Therefore, as indicated in Fig. 7.2, the region of flow where the feedback eflect is
ignored is called a weak viscous interaction.
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THustration of strong and weak viscous interactions.

The similarity parameter that governs laminar viscous interactions, both
strong and weak, s “chi bar,” defined as

M3
= /C (7.10)
J

where

_ Pwhv
pelue

C

(7.11)

The value of 7 can be used to ascertain whether an interaction region is strong
or weak; large values of ¥ correspond o the strong interaction region, and small
values of y denote a weak interaction region. The role of 7 as a similarity
paramcter is derived in the next section.

Finally, we emphasize again the major consequence of this viscous interac-
tion, namely the creation of an induced pressure change that can be substantial.
This induced pressure change, sometimes called the induced pressure increment,
is sketched in Fig. 7.3, where the actual pressure ratio p/p ., along the surface of
the plate lies considerably above the inviscid flow value of unity. This type of
ceffect was first reported by Becker (Ref. 122) in 1950, who measured pressures
near the leading edge of a wedge that were above the classical wedge pressure
from oblique shock theory.
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With interaction

No interaction

FIGURE 7.3
Schematic of the induced pressure increment due to viscous interaction.

7.3 THE ROLE OF 7
IN HYPERSONIC VISCOUS INTERACTION

The induced pressure increment sketched in Fig. 7.3 is governed by the param-
eter 7, defined by Eqgs. (7.10) and (7.11). The purpose of this section is to demon-
strate this fact. The following analysis, patterned after that of Stollery in Ref.
123, is a physically based argument, with a minimum of mathcmatical detail,
which tlustrates the major role played by 7 in hypersonic viscous interactions.

The displacement thickness, §* shown in Fig. 7.2, can be expressed for
a hypersonic laminar boundary fayer on a flat plate as proportional to the
familar result

o*

(7.12)

Re
where. following the reference temperature method discussed in Sec. 6.9, Re is

based on average properties within the boundary layer evaluated at the refer-
ence temperature given by Eq. (6.159). Equation (7.12) can then be written as

; u* X P H
)* o X - = - === —_ 713
B f\\/*l/r \/wVX\/p Ue \/R \/p Lo (7.13)
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where Re is the usual Reynolds number based on free-stream properties, and p*
and p* are evaluated at the reference temperature T*. From the equation of
state,

foo 2 _f= (7.14)

Assuming that pressure is constant through the boundary layer in the direction
normal to the surface, we have p* = p,, where p, is the pressure at the outer
edge of the boundary layer. Keep in mind that, due to the viscous interaction
effect, p, is not equal to the free-stream pressure p,. Thus, Eq. (7.14) can be
written as

T*
o L (7.15)
p* Ty p.
Also, assume a variation of viscosity with temperature as
* T*
oo (7.16)
Ha, T,
where C is given by
T,
Pvw _olw
He T,

From the equation of state, and recalling that pressure is constant through the
boundary layer in the normal direction, T,/T, = p./p,,- Thus, the above relation
becomes

Hw _ o Pe
l'te {’W
or
= Pwbw
Pelte

Therefore, C in Eq. (7.16) is the same as defined in Eq. (7.11) associated with the
definition of 7. Substituting Eqs. (7.15) and (7.16) into (7.13), we have

%\ 2
o*oc—-\[T ”‘-" (1.17)

Examining Eq. (6.159) for the reference temperature, we see that T*/T, depends
on M2, Thus, with only a small approximation, we can assume that T, ~ T, and
M, ~ M_, and accept the following proportionality

T M2 (7.18)

w©
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Combining Egs. (7.17) and (7.18), we have

5 ot M2 \/ < (7.19)
JRe PelDor

Equation (7.19) is an intermediate result, to which we will return later. Note
that it expresses the variation of 8* in terms of the ratio of the boundary layer
edge pressure to free-stream pressure. Since p, is higher than p, because of the
rapid growth of the boundary layer (examine again Fig. 7.2), let us obtain an
expression for p,/p, in terms of dé*/dx.

In Sec. 2.3 we obtained from exact oblique shock theory an exact expres-
sion for p,/p, in terms of the hypersonic similarity parameter. This result is
given in Eq. (2.28), repeated below.

2 G +D A

Here, K = M0, where 0 is the flow deflection angle across the oblique shock.
Recall that the nomenclature in Chap. 2 used the usual shock conventions, with
subscripts 1 and 2 denoting conditions upstream and downstream of the shock
respectively. Let us now apply Eq. (2.28) to estimate the pressure at the outer
edge of the boundary layer shown in Fig. 7.2. We will assume that the eflective
body thickness seen by the [ree-stream is given by ¢*, with a slope equal to dé*/
dx. Using the tangent wedge method described in Sec. 3.6, [q. (2.28) can be
written as

. 1 ZESICS
;’, .y JQ-;{J K2 4 9K \/(%) t o (7.20)

where K = M |, (dd*/dx).

Pause {or a moment, and assess our progress so far. We have obtained an
expression for é* in terms of p,/p., given by Eq. (7.19). In turn, we have devel-
oped an equation for p,/p, in terms of dé*/dx, given by Eq. (7.20). These two
equations provide the tools for analyzing the viscous interaction—the effect of
the boundary fayer on the outer inviscid flow [Eq. (7.20)], and the effect of the
outer inviscid flow on the boundary layer [Eq. (7.19)]. However, the use of these
two equations depends on whether we are dealing with the strong interaction or
the weak interaction region as illustrated in Fig. 7.2. Let’s consider each of these
separately.

Strong Interaction

In the region of strong interaction, dé*/dx is large. Since K = M (dé*/dx), we
therefore assume that K2 » 1. With this, Eq. (7.20) becomes

, *\ 2
Pe ED e 0T 0 <ﬁ> (721)

Do 2 2 dx
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To couple the boundary layer with the outer inviscid flow, substitute Eq. (7.21)
into (7.19), obtaining
X - 1
ot —— M2 /C——
" JRe NS @

or

c
0% do* o \/A" M x dx (7.22)
Re

Recalling that Re = p_ V, x/p.,., Eq. (7.22) can be written as

5% d5* o \/ C,‘f;, M, x"2 dx (1.23)

PoVew

Integrating Eq. (7.23), we obtain

(%) o \/,Cﬂ;o/ M 32

o "o

or

C 1/4
5% o <bi‘;i> MLy (7.24)

Note an important physical result from Eq. (7.24). We are used to the conven-
tional laminar boundary layer result that &* grows parabolically, ie., as x"2
However, in the strong interaction region, Eq. (7.24) demonstrates that

5% o x¥* (7.25)

Differentiating Eq. (7.24), we obtain

15% [ Cuy \M*
‘d; m(b Ji;L) Mg 1 (7.26)

Hence, in the strong interaction region,

(7.27)

Combining Eqs. (7.27) and (7.21), we also see in the strong interaction region
that

Pe o x=112 (7.28)
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Hence, for strong viscous interaction, the variation of induced pressure with x

sketched in Fig. 7.3 is an inverse square root variation. Finally, let us rewrite Eq.
(7.26) as

ds* [ C\1

Hence

%\ 2
K% = M <d5 ) o (7.30)

o) “ e

Finally, substituting Eq. (7.30) into (7.20), we have (neglecting the 1/K* term
because K » 1)

(1.31)

where «, is a constant. Equation (7.31) ts important. It demonstrates that, for
strong viscous interaction:

1. p./p. depends only on 7. Hence, j is the governing similarity parameter for
induced pressure changes, as sketched in Fig. 7.3.

2. The induced pressure change varies linearly with .

Note. In examining Fig, 7.3, keep in mind that, for given freestream conditions,
7o x™V2 Hence, the abscissa of Fig. 7.3, which is the running length along the
plate, can also be interpreted as a variation in , where y decreases with increas-
ing x, that is, at the leading edge, y — oo, and as x increases, y constantly
decreases. For example, in a single wind tunnel test at a given set of free-
stream conditions, one set of surface pressure measurements gives data over a
range of 7.

Weak Interaction

For weak viscous interactions, recall from Fig. 7.2 that dé*/dx is moderate. In
fact, let us assume that dé*/dx is small enough that K = M (d6*/dx) < 1, and
hence K? < 1. With this, Eq. (7.20) can be written as

Pe _

1
ﬂ1+yK+y——(y: ) 2

(1.32)

©
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Since K < 1 and K? < 1, Eq. (7.32) gives approximately p,/p,, = 1. Hence, from
Eq. (7.19),

5% o \/%e M2 /C (1.33)

and

ds* M?
o[- M2 SO =2 /O 7.34
dx ” \//’«, Ve ,4\/7‘6 ﬁe f ( )
This is consistent with the definition of weak viscous interaction illustrated in
Fig. 7.2; there is no feedback of the changes in the inviscid flow to the boundary

layer. Consequently, from Eqs. (7.33) and (7.34) we obtain the familiar results
that

&% oc x 112 (7.34a)
and
X~ (7.35)
Also,
K=M, f’f oo Mo oy (736)

Note from Eq. (7.36) that, in contrast to strong interaction theory where
K? o %, we find that for weak interaction theory, K oc . Thus, from Eq. (7.32),

(7.37)

(7.38)

In summary, the analysis of this section has demonstrated that ¥ is the
governing parameter that dictates the induced pressure increment for hypersonic
viscous interactions. Moreover, expressions for the induced pressures as a func-
tion of ¥ have been obtained. In a more detailed analysis, Hayes and Probstein
(Ref. 46) have obtained the following results for air with y = 1.4:

For an insulated flar plate,

Strong interaction LA 0.5147 + 0.759 (7.39)

o«
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Weak interaction o1 40317 + 0.0572 (7.40)
P
For a cold woll case, where T,, < T,,,,
Strong interaction P 1 +0.5% (741
pw
Weak interaction P 1100787 (7.42)

Note that a cold wall mitigates to some extent the magnitude of the viscous
interaction. This makes sense, because for a cold wall the density in the bound-
ary layer will be higher, hence the boundary layer thickness will be smaller, thus
diminishing the root cause of the viscous interaction in the first place. Also note
that the form of Egs. (7.39)-(7.42) is consistent with that of Eqgs. (7.31), (7.37),
and (7.38).

Some classical results are shown in Fig. 7.4, obtained from Ref. 46. Here,
experimental data for p/p,, on an insulated flat plate (denoted by the circles and
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Correlation of induced pressures. (From Hayes and Probstein, Ref. 46.)
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triangles) are compared with both strong and weak viscous interaction theory
(denoted by the curves). Note that the data are reasonably correlated by 7, and
that rcasonable agrecment is obtained between theory and experiment. Also
note that, for all practical purposes, the strong and weak interaction regions
appeas to be described by

Strony interaction >3
Weak interaction ¥ <3

Additional experimental and theoretical data are given in Fig. 7.5, obtained from
Ref. 123, Here, the induced pressure increment is plotted versus 7! for hyper-
sonic flow over a flat plate. Measurements were made at Mach numbers of 5, 10,
and 20. Looking at the right half of Fig. 7.5, we see again that the pressure data
are correlated by 7, and agree well with weak and strong viscous interaction
theory. Along the abscissa, ¥ is increasing from right to left, hence the left half of
Fig. 7.5 corresponds to high values of 7, dictated by the low Reynolds numbers
assoctated with x locations near the leading edge of the plate. As the leading
edge is approached more closely, “low-density” effects such as discussed in Sec.
1.3E arc encountered, e, the Knudsen number becomes large. Hence, in the
immediate neighborhood of the icading edge, the continuum assumption breaks
down, and the measured pressures decrease due to slip-flow effects. Of course,
the continuum theory discussed in this chapter does not hold for such “low
density” conditions.
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FIGURE 7.5

Induced pressures on a flat plate. (From Ref. 79.)
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74 OTHER VISCOUS INTERACTION RESULTS

In Sec. 7.3, 7 was demonstrated to be the proper viscous interaction correlation
parameter for the induced pressure change, p/p,,. In contrast, a different correla-
tion parameter governs pressure coefficient and force cocfficients. This is easily
seen by considering the pressure coefficient in the form given by Eq. (2.13) writ-
ten as

2 (p
C,=— 1
? ?Mi<pm >

Assuming that for hypersonic conditions p/p,, > 1, then the above becomes

2 p
x = 7.43
" yME py, (749
From the results of Sec. 7.3,
P M
Lcg= C
Do N/ Re
Substituting this into Eq. (7.43), we have
M _
C, o 7“; Jc=7 (744)
Re

Hence, we see that the proper viscous interaction correlation parameter for C, is
not M3./C/\/Re, but rather M,./C/\/Re, defined as ¥ in Eq. (7.44). More-
over, since lift and wave drag coefficients are obtained by integrating C, over a

given body surface, then viscous interaction effects on both C, and C,  are also
correlated by V, that is,

Cy :f,(V)
CDW =f2(l7)

It is interesting to note that viscous interaction effects on skin friction and
heat transfer coeflicients are also correlated by ¥. Both skin friction and heat
transfer are increased by viscous interaction. Sample results are shown in Fig,
7.6, obtained from Rel. 79. Here the skin friction coefficient ¢, is plotted versus
Re for hypersonic laminar flow over a flat plate. Conventional boundary layer
theory shows that ¢ oc l/m, and this variation is given as the double line
which makes a slope of —0.5 on the log-log plot of Fig. 7.6. Experimental data
is given by the symbols, and viscous interaction theory is given by the solid and
dashed lines. Both the experimental data and the viscous interaction theory fall
far above the conventional boundary layer theory, thus demonstrating the im-
portant effect of viscous interactions on ¢,. The fact that viscous interaction
effects on ¢, are correlated by V (rather than ¥) is demonstrated in Fig. 7.7,

obtained from Ref. 79. Here, ¢, is plotted versus M /./Re (hence essentially V).
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Note that experimental data obtained at different Mach and Reynolds numbers
are correlated fairly well by this parameter.

The previous discussion has centered on viscous interaction as it affects
flow over a flut plate. This is because a flat plate is a simple configuration which
allows us to highlight the physical aspects of viscous interaction. However,
viscous interaction 18 a basic phenomenon which affects the hypersonic flow
over any conftguration. Another simple geometry is a sharp cone. Figure 7.8
gives experimental and theoretical data for the hypersonic flow over cones. Here,
the induced pressure increment is plotted versus 7., where p is the actual cone
surface pressure, p, is the inviscid cone pressure, and 7, is defined as

C
= 3
fo= Mo Re,
where the subscript ¢ denotes inviscid cone surface properties. Also, here
C = (pp),/(pp).. In Fig. 1.8, the circles denote experimental data obtained from
Ref. 6, and the lines denote theoretical results from Refs. 124 and 125. These
theoretical analyses are approximate techniques for estimating the viscous inter-
action effect. Probstein (Ref. 124) obtained analytic results using a Taylor series
expansion in powers of the slope of the boundary layer displacement thickness.
Talbot’s method (Ref. 125) is an approximate graphical approach coupling the
displacement thickness slope with the inviscid flow over a cone. The major point
to be noted from Fig. 7.8 is that ¥, is a reasonable parameter for correlating the
induced pressure increment on cones. As %, increases (due to either or both

tst-ordes
theory

0.6~

Probstein Adiabaric
\,
Nonadiabatic

«

Induced pressure increment P =P

FIGURE 7.8
Induced pressure increment versus the hypersonic interaction parameter. (From Ref. 6.)
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Mach number increasing and Reynolds number decreasing), the induced pres-
surc increment increases. Moreover, this variation is linear, as seen in Fig. 7.8,
and as consistent with the flat plate results discussed earlier.

The overall effect of viscous interaction on a hypersonic flight vehicle is to
reduce the lift to drag ration, L/D. This is illustrated in Fig. 7.9, obtained from
Ref. 123, where maximum L/D is plotted versus Mm/ﬁ (hence essentially V)
for a number of different generic vehicle shapes ranging from blunt to slender
bodies. In all cases, (L/D),.,, decreases as V increases. This is because viscous
interaction effects increase pressure (hence wave drag) and skin friction (hence
friction drag), both increasing the overall drag of the body. The viscous inter-
action effect on lift is minor, because the increased pressure due to viscous
interaction acts on both the top and bottom of lifting surfaces, and hence tends
to cancel in the lift direction. Thus the degradation of (L/D),,, with increasing
¥ shown in Fig. 7.9 is due primarily to an increase in D.
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Viscous effects on hypersonic maximum lift-to-drag ratio for five classes of vehicles correlated with
the viscous interaction parameter. (From Stollery, Ref. 123.)
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More recent work on viscous interaction correlations for force coefficients
derived from the space shuttle program has identified a modified viscous interac-
tion parameter as

_ M
VIE el Cl
eV

where

and where p’ and ' are evaluated at a reference temperature T’ within the
boundary layer

@

T T, y—1
= 0,468 + 0.532 - + 0.195 ( ~—~ | M2 745
" oo s (1 04

The validity of 7’ as a viscous interaction parameter for force coefficients is
demonstrated in Fig. 7.10, obtained from Ref. 126. Here, experimental and flight
data for the axial force coefficient for the space shuttle are correlated by four
different parameters. In Fig. 7.10a the data are plotted versus a modified form of
7, where the constant €’ is evaluated at the reference temperature given by Eq.
(7.45). A poor correlation is obtained, as shown by the scattered data points. In

Fig. 7.10h, the correlation parameter is V; again, the data are scattered. In Fig.
7.10¢, a simple Mm/\/Re correlation is attempted, but it also fails, Finally, in
Fig. 7.10d, we see that the data collapse to the same curve when correlated
versus ¥, This is the desired result, and it confirms the use of V' as a force
coeflicient correlation parameter.

Note that all of our discussion so far on viscous interaction has assumed a
laminar boundary layer. This is usually the case that actually prevails; viscous
interactions occur when 7, V, or ¥V’ are large, and this corresponds to large M,
and/or small Re. In turn, in Sec. 6.7 we saw that large M and small Re pro-
mote laminar flow. Hence, most viscous interaction theory is based on laminar
flow. However, for the sake of completeness, we mention the work of Stollery
(see Ref. 123) on studies of viscous interactions associated with turbulent flow.
His analysis identified the following viscous interaction parameters for turbulent
flow:

M O\
Strong interaction ©
Re
M® C\ VS
Weak interaction —x
Re

This brings to an end our discussion of pressure-oriented viscous interac-
tions. These viscous interactions are an important element of hypersonic viscous
flow. By no means are all hypersonic flows dominated by viscous interactions.
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However, for those flow problems where ¥ (or ¥, or V') are large, viscous inter-
" actions will play an important role. Therefore, when analyzing any hypersonic
viscous-flow problem, it is important to examine the associated values of the
interaction parameters in order to ascertain whether or not the inclusion of
viscous interaction effects is necessary.

7.5 HYPERSONIC SHOCK-WAVE/
BOUNDARY LAYER INTERACTIONS

In this section we address a second type of viscous interaction, completely dis-
tinct from the pressure interaction discussed in Sec. 7.1-7.4, namely, the inter-
action that occurs when a shock wave impinges on a boundary layer. Such
shock-wave/boundary-layer interactions are particularly important to hypersonic
flow problems where aerodynamic heating is a major factor, because there can
be local peaks of heat transfer in the interaction region that can be extremely
severe. A graphical practical example of this interaction heating is provided by
one of the final flights of the X-15 hypersonic airplane vehicle in the 1960s (see
Fig. 7.11). For this flight, which occurred on October 3, 1967, a dummy ramjet
was hung below the fuselage of the X-15, with a pylon connecting the dummy
ramjet and the lower surface of the fuselage. On that day, test pilot Pete Knight
flew the X-15 at virtually maximum speed, reaching Mach 6.72 at slightly over
100,000 feet altitude. During the hypersonic flight, a shock wave from the ramjet
nacelle impinged upon the pylon, and burned a hole through the pylon surface.
A photograph of this damage is shown in Fig. 7.12, obtained {from Ref. 127. The
black bar which slashes across the bottom of the pylon is simply a graphical
means of pointing out the burned interaction region. In addition, the bow shock
wave from the pylon, impinging on the bottom surface of the X-15, also caused
local heating damage, as seen at the top of Fig. 7.12. The ramjet model was
burned completely off the pylon, and punched a hole in the X-15 that allowed
the extremely hot boundary layer air to be rammed into the internal structure,
thus weakening the aircraft. Fortunately, Knight was able to safely land the
X-15; however, it was the worst case of damage caused by aerodynamic heating

FIGURE 7.11
The X-15 hypersonic test aircraft.
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FIGURE 7.12
Damage to the X-15 duc to shock-wave impingement. (From Neumann, Ref. 127.)

throughout the test history of the X-15. (A detailed description of this flight is
presented by Richard Hallion in Ref. 128)) Clearly from this example, shock
wave-boundary-layer interactions can have serious effects on hypersonic vehi-
cles, and this only becomes more severe as the Mach number increases.

The qualitative physical aspects of a two-dimensional shock-wave/bound-
ary layer interaction are sketched in Fig, 7.13. Here we see a boundary layer
growing along a flat plate, where at some downstream location an incident
shock wave impinges on the boundary layer. The large pressure rise across the
shock wave acts as a severe adverse pressure gradient imposed on the boundary
layer, thus causing the boundary layer to locally separate from the surface.
Because the high pressure behind the shock feeds upstream through the subsonic
portion of the boundary layer, the separation takes place ahead of the impinge-
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ment point of the incident shock wave. In turn, the separated boundary layer
induces a sccond shock wave, identified here as the induced separation shock.
The sepirated boundary fayer subsequently turns back toward the plate,
reattaching to the surface at some downstream location, and causing a third
shock wave called the rearrachment shock. Between the separation and reattachi-
ment shocks, expansion waves are generated where the boundary layer is turn-
ing back toward the surface. At the point of reattachment, the boundary layer
has become relatively thin, the pressure is high, and consequently this becomes a
region of high local aerodynamic heating, Further away from the plate, the
separation and reattachment shocks merge to form the conventional “reflected
shock wave™ which is expected from the classical inviscid picture (see, for exam-
ple, Ref. 4). The scale and severity of the interaction picture shown in Fig. 7.13
depends on whether the boundary layer is laminar or turbulent. Since laminar
boundary layers separate more readily than turbulent boundary layers (see, for
example, Refs. 1 and 5), the laminar interaction usually takes place more readily
with more severe attendant consequences than the turbulent interaction. How-
ever, the general qualitative aspects of the interaction as sketched in Fig. 7.13
are the same.

The fluid dynamic and mathematical details of the interaction region
sketched in Fig. 7.13 are complex, and the [ull prediction of this flow is still a
state-ol-the-art rescarch problem. However, great strides have been made in
recent years with the application of computational fluid dynamics to this prob-
lem, and solutions of the full Navier-Stokes equations for the flow sketched in

Incident shock wave Reattachment shock wave

Induced separalion shock wave

M,>1
—_——
Boundary layer o )

RN N

1 T

! X Separation Locally Reaitachment

point separated flow point

FIGURE 7.13

Schematic of the shock-wave/boundary-layer interaction.
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Fig. 7.13 have been obtained. Solutions of the full Navier-Stokes equations are
described in Chap. 8. The purpose of the present section is simply to describe
some basic physical aspects of the hypersonic shock wave/boundary-layer inter-
action probiem.

Experimental and computational data for the two-dimensional interaction
of a shock wave impinging on a turbulent flat plate boundary layer are given in
Fig. 7.14, obtained from Ref. 108. In Fig. 7.14a, the ratio of surface pressure to
free stream total pressure is plotted versus distance along the surface (nondimen-
sionalized by J,, the boundary layer thickness ahead of the interaction). Here,
Xp is taken as the theoretical inviscid flow impingement point for the incident

o Experiment (Ref. 129)
Calculation

Pu/Po., (a)

0.05{~

200~

{

160

1201~

1.N/mi. 4

—40] -

—80} -

—120 H N L | | )

FIGURE 7.14
Effects of shock-wave/boundary-layer interaclion on (a) pressure distribution, and (b) shear stress,
for Much 3 flow over a flal plate. Turbulent flow. (From Ref. 108.)
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shock wave. The free-stream Mach number is 3—not hypersonic, but certainly
illustrative of the basic phenomena. The Reynolds number based on d, is about
10%. Note in Fig. 7.14a that the surface pressure first increases at the front of the
interaction region (ahead of the theoretical incident shock impingement point),
reaches a platcau through the center of the separated region, and then increascs
again as the reattachment point is approached. The pressure variation shown in
Fig. 7.14a is typical of that for a two-dimensional shock wave/boundary layer
interaction. The open circles correspond to experimental measurements of Reda
and Murphy (Ref. 129). The curve is obtained from a numerical sotution of the
thin-layer Navier-Stokes equations (see Chap. 8) as reported in Ref. 108, and
using the Baldwin-Lomax turbulence model discussed in Sec. 6.8. In Fig. 7.14b
the variation of surface shear stress is plotted versus distance along the wall.
Note that in the separated region the shear stress plummets to zero, reverses its
direction (negative values) in a rather complex variation, and then recovers to a
positive value in the vicinity of the reattachment point. The two circles on the
horizontal axis denote measured separation and reattachment points, and the
curve is obtained from the calculations of Ref. 108.

An axisymmetric shock wave/boundary layer interaction is illustrated in
Figs. 7.15-7.17, obtained from Ref. 130. The experimental model and a sketch of
the interaction region is shown in Fig. 7.15. Here, an ogive-cylinder is used as
the test surface, and an annular shock wave generator is mounted concentric
with the cylinder axis. Shock waves of two different strengths are generated by
different annuluar rings, one beveled at a deflection angle of a« = 7.5°, and the
other with o = 15°. Test results obtained at M, = 7.2 and a free-stream unit
Reynolds number of 10.9 x 10° per meter are shown in Fig. 7.16. Once again, x,
denotes the theoretical inviscid incident shock impingement point. Plotted in
Fig. 7.16 are experimental results for p/p,. ¢,, and Cy versus (x — x,)/8,. The
boundary layer is turbulent. First, examine the results for the bevel angle
o = 7.5°, which produces a relatively weak shock wave. For this case, no flow
separation can be seen. The pressure rises smoothly through the interaction
region; the skin friction first decreases in the face of the adverse pressure gradi-
ent but then increases in the recompression region where the boundary layer
becomes thinner. The heat transfer continually increases, following the same
behavior as the pressure distribution. In contrast, the results for a = 15°, which
produces a stronger shock, show definite flow separation. The pressure distribu-
tion has a local plateau in the separation region, the skin friction goes negative
in this region, and the heat transfer rises continually through the interaction
region. The decay in p/p,,, ¢;, and Cp, downstream of the interaction region is
due to the expansion wave from the annular ring (see Fig. 7.15). The experimen-
tal results for o = 157 are repeated in Fig. 7.17, where they are compared with
numerical calucations based on a solution of the Navier-Stokes equations. This
solution uses MacCormack’s time-marching procedure, which was described in
Sec. 5.3 for inviscid flows, but here is applied to the Navier-Stokes equations.
(Again, note that Navier-Stokes solutions are the subject of Chap. 8.) Two sets
of calculations are shown, each made with a different algebraic eddy viscosity
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FIGURE 7.15
Test model geometry and flowfield sketch for the shock-wave/boundary-layer interaction studied by
Marvin ¢t al. (Ref. 130)

model for the turbulent flow (for details on the models, see Ref. 130). Neither
calculation does a very adequate job in predicting the details of the turbulent
shock wave/boundary-layer interaction, thus demonstrating that improvements
are needed in the state of the art for this problem.

Comparing the variations of p/p,, and Cy in Fig. 7.16, we have already
noted that heat transfer tends to follow the pressure distribution. This is some-
what to be expected on the basis of flat plate results, as follows. From Eq. (6.81)
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Effects of shock-wave/boundary-layer interaction on pressure, skin friclion, and heat transfer distri-
butions. (From Ref. 130.)

for a laminar flow
1

|
o ———
JRe /b,
From the definition of Cp [Eq. (6.63)]
qw = peue(haw - hw)CH (747)
Combining Egs. (7.46) and (7.47), we have

G \/Pe (7.48)

Cyoc (7.46)
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FIGURLE 7.17
Comparison between compuiations and experiment for the shock-wave/boundary-layer interaction
on a flat plate. (From Ref. 130.)

From the equution of state, p = pRT, Eq. (7.48) becomes

q, < \/pL, (7.49)
Equation (7.49) holds for a laminar flow. In contrast, for a turbulent flow,
1
Cy o Rel/3 (7.50)

and hence, in combination with Eq. (7.47) and the equation of state, we have

qy o pe° (7.51)
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FIGURE 7.18
Correlation of turbulent shock-wave/boundary-layer interaction on a flai plate, as given by Neu-
mann. (Ref. /27

From the results of Egs. (7.49) and (7.51), it is no surprise that heat transfer and
pressure tend to follow the same qualitative variations for a two-dimensional
shock-wave/boundary-layer interaction. Indeed, Neumann (Ref 127) suggests
the following relation between maximum pressure in the interaction p,,,, maxi-
mum heating ¢,,,., and the standard flat plate values p,, and g,

Gmax _ (ﬁﬂzﬂ}) (7.52)

yp Pip

where n = 0.5 for laminar flow and n = 0.8 for turbulent flow. To support this
result, Neumann gives the correlation of turbulent shock wave/boundary-layer
interaction data shown as a log-log plot in Fig. 7.18. The data are obtained {rom
various experiments ranging from Mach 6 to 10, The straight line in Fig. 7.18
has a slope of 0.8, and the data arc clustered around this line, thus confirming
the variation given by Eq. (7.52).

An example of a three-dimensional shock-wave/boundary-layer interaction
is the flow configuration shown in Fig. 7.19. Here we see a sharp wedge
mounted on a flat plate. The interaction between the oblique shock wave from
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FIGURE 7.19
Three-dimensional shock-wave/boundury-layer interaction geometry; wedge on a flat plate.

the leading edge of the wedge and the flat plate boundary layer is a complex,
thiree-dimensional problem. This flow problem has been studied experimentally
by Oskam et al. (Refs. 131 and 132), and numerically by Knight (Ref. 133). In
particular, using MacCormack’s time-marching techique (see Sec. 5.3) to solve
the complete Navier-Stokes equations, and the Baldwin-Lomax turbulence
model (see Sec. 6.8), Knight obtained the results shown in Fig. 7.20. Here, the
pressure distribution is given as a function of z (the distance from the wedge
surface) at a given axial location, x/d,, = 14.1, for a Mach 3 free stream and a
wedpe angle o = 9.72 degrees. In Fig. 7.20, z is nondimensionalized by &, the
flat plate boundary layer thickness at x = 0 (the location of the wedge leading
edge). The arrow in Fig. 7.20 denotes the theoretical z coordinate of the inviscid-
llow shock wave impinging on the flat plate surface. The solid curve represents
Knight’s three-dimensional calculations, and the crosses are data from Oskam
ct al (Refs. 131 and 132). Even in a three.dimensional flow, the pressure exhibits
the familiar variation through the interaction region: (1) a rapid increase at the
start of the interaction, (2) a plateau in the separated region, and (3) another
rapid increase associated with reattachment and the near corner flow at the
juncture of the wedge and the flat plate. The aerodynamic heating is shown in
Fig. 7.21, where C,/Cy is plotted versus z/d,; Cy_ is the flat plate value at
x =0 (recall that x =0 is the location of the wedge leading edge at a given
distance downstream of the flat plate leading edge). As in the previous figure, z
is located at x/8,, = 14.1. Note the rapid increase in Cy through the interaction
zone, and the severe drop and subsequent recovery as the corner is approached.
Again, the solid curve represents the calculations of Knight, and the crosses
correspond to the data of Oskam el al. It is rather remarkable in both Figs. 7.20
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and 7.2 that fairly reasonable agreement is obtained between the calculations
and experiment, considering the complexity of the three-dimensional interaction.

With this, we end our discussion of the shock-wave/boundary-layer inter-
action. Our purpose has been to describe the basic physical nature of the
interaction, withoul delving into the theoretical complexities of the problem. The
literature should be consulted for more details.

7.6 SUMMARY

Return for a moment to the roadmap given in Fig. 1.23. In the present chapter
we have discussed hypersonic viscous interactions of two types: the pressure
interaction that occurs between a rapidly growing hypersonic boundary layer
and the inviscid flow (usually identified simply as “viscous interaction™); and the
interaction between an incident shock wave and a boundary layer. Both of these
interactions are listed in Fig. 1.23 near the bottom of the branch dealing with
hypersonic viscous flows. Clearly, we are nearing the completion of our discus-
sion of such flows.

In the present chapter, we have shown that the laminar boundary layer
thickness grows as the Mach number squared:

—oC (7.9)

Hence, at hypersonic speeds the boundary layer thickness can be large. In turn,
the rapidly growing boundary layer interacts with the outer inviscid flow, caus-
ing an increase in pressure (induced pressure), skin friction, and heat transfer, If
the inviscid flow is strongly affected, these changes feed back to the boundary
layer itself, causing a sfrong viscous interaction. If the inviscid flow is only
weakly affected, it has only a negligible feedback effect on the boundary layer,
causing & weak viscous interaction. The governing parameter for the induced
pressure increment due to both strong and weak viscous interaction is

i=—2/C (7.10)
\/Rc
where
C = Pubtn (1.11)
’)ellL’
For an insulated flat plate
Strong interaction b 0.514 y + 0.759 (7.39)
Weak interaction L 14031740057 (7.40)

P
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For a cold wall, where T,, <€ T,

Strong interaction P t+0.t5% (7.4
Weak interaetion P e 14007 X (7.42)
D

From a comparison of experimental data with theory, the strong and weak
interaction regions can be identified by:

Strong interaction >3
Weak interaction 7<3

The proper correlation parameter for viscous interaction effects on C, is

=i

== /c (7.44)
\ﬂ{e

V governs skin friction coeflicient. More recent work derived from work on the

space shuttle has identilied @ modified viscous interaction parameter that corre-

lates the axial force coeflicient:

where

v
c ="
Polo

and where p’ and p' are evaluated at a reference temperature given by

T 1

o= 0.468 + 0532 =+ 0. 195( —~%>M2

T, T, 2

A sccond type of viscous interaction particularly important at hypersonic

speeds is the shock-wave/boundary layer interaction. Such an interaction is
characterized by an incident shock, an induced separation shock, a reattachment
shock, an embedded expansion wave, and a separated flow region. Shock-wave/
boundary-layer interactions cause local peaks in aerodynamic heating which can
have serious consequences on hypersonic vehicles.

PROBLEMS

7.1. Consider a flar plate of length equal to 10 meters. Assume this flat plate is flying the
trajectory labeled as “high Lift” (m/C, S = 50 kg/m?) shown in Fig. 6.3. The wall
temperature of the plate is held constant at 1600 K. (a) Plot the variation of y at
0.5m from the leading edge as a function of M as the flat plate flies this trajectory.
(h) Repear part (a), except calculate 7 at the trailing edge of the plate. For simplicity,
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7.2.

VISCOUS HYPERSONIC FLOW

in the above assume that the angle of attack of the plate is essentially zero (although
this violates the finite Lift used in obtaining the trajectory in Fig. 6.3). The purpose of
this problem is to obtain a “feel” for the values of y encountered by hypersonic
vehicles during atmosphere flight.

Consider a flat plate with a 5-meter length at zero angle of attack. The wall tempera-
ture is 1200K. The free-stream conditions are M = 25 at a standard altitude of
280,000 ft. Calculate and plot the variation of pressure as a function of distance
downstream of the leading edge. Compare this with the exact inviscid pressure. Com-
ment on the impact of viscous interaction for this case.
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Bur as no two (theoreticians) agree on this (skin friction) or any
other subject, some not agreeing today with what they wrote a
vear ago, [ think we might put down all their results, add them
together, and then divide by the number of mathematicians, and
thus find the average coefficient of error.

Hiram Maxim, early aeronautical designer, 1908

The advent of the electronic computer completely altered the
nature of the facilities available for numerical calculations. An
electronic computer can perform all the functions of a desk
calculator but at much higher speeds and, in addition, it can
largely replace the operator as well!

K. N. Dodd, British mathematician, 1964
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8.1 INTRODUCTION

In the first quote above, Hiram Maxim, inventor of the machine gun and the
designer and builder of a large flying machine in the 1890s, is venting his frustra-
tion at the lack of applicability of mathematical theory to the practical problems
of flight. In contrast, in the second quote above we have, just 56 years later, K.
N. Dodd remarking about the revalution precipitated by the high-speed digital
computer. In the 56 years between these quotes, mathematical theory was indeed
successfully applied to the practical problem of flight (see the historical notes in
Refs. I, 4, and 5), and in the 23 years that have ensued from Dodd’s quote, we
have indeed seen a1 most remarkable revolution in computing. These quotes are
relevant to the present chapter, because here we discuss the most “exact” analy-
ses of hypersonic flows available, and these “exact” analyses are made possible
only by the use of a high-speed computer. This chapter could not have been
written 20 years ago; moreover, if he were alive today, Hiram Maxim would
have to change his image of the theoretician.

To be more specific, this chapter deals with the application of computa-
tional fluid dynamics to hypersonic viscous flows. However, as in Chap. 5, our
intent is not to claborate on the details of CFD; the excellent book by Ander-
son, Tannehill, and Pletcher (Ref. 52) serves this purpose. Instead, our objective
here will be to present varionus approaches to the solution of hypersonic viscous
flows which go beyond, and are more “exact™ than, the boundary layer analyses
discussed in Chap. 6.

Thinking along another line, the weak and strong viscous interaction
theories discussed in Chap. 7 are a product of the 1950s and 1960s, before the
advent of computational Nuid dynamics. They serve a useful purpose in provid-
ing convenient correlations and prediction expressions, albeit based on an
approximate theory. The approximations involved separate calculations of the
boundary layer and outer inviscid flow, and then a coupling of these separate
calculations to take into account the viscous interaction. Today, the viscous
interaction effect can be calculated exactly, simply by treating the entire flow-
ficld between the body and shock as fully viscous—no arbitrary division between
a boiundary layer and a inviscid llow needs to be made. Indeed, this is the
natural and physically proper approach. The fully viscous flow cualculations are
made with standard CHFD techniques, to be discussed in the present chapter.

There is another reason to favor a fully viscous shock-luyer analyses over
the conventional boundary layer approach. Recall from Sec. 6.4 that the denva-
tion ol the hypersonic boundary layer equations by means of an order-of-magni-
tude reduction of the Navier-Stokes equations did not preclude a finite normal
pressure gradient through the boundary layer, i.e., it s compatible with bound-
ary layer hypothesis that dp/0y # 0 at hypersonic speeds. However, the classical
first-order boundary layer theory as discussed in Chap. 6 has no mechanism for
computing dp/dy. Hence, for an analysis of a hypersonic viscous flow, it is inher-
ently more appropnate to assume the flow is viscous throughout the entire flow-
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field, and to compute this fully viscous flow by means of a system of equations
more accurate than the boundary layer equations. This is the purpose of the
present chapter.

In the modern hypersonics of today, there are three approaches to the
sotution of a fully viscous flow which have found widespread use. They are:

1. “Viscous shock-layer” solutions
2. Parabolized Navier-Stokes solutions
3. Full Navier-Stokes solutions

Each of three approaches listed above utilize systems of equations which are
more accurate than the boundary layer equations; going from items 1 to 3, the
system of cquations is progressively more accurate, finally ending with the com-
plete Navier-Stokes equations with no basic simplifications whatsoever. More-
over, these CFD techniques go far beyond just the calculation of viscous
interactions—they allow the detailed calculations of the complete flowfield over
a body where the flow is assumed to be viscous at every point. Hence they
provide everything about the flow, such as the shock shape, detailed flow vari-
ables between the shock and the body, skin friction, heat transfer, lift, drag,
moments, cte. In the following sections, we will examine individually the ap-
proach taken by cach of these methods, with the presentation of appropriate
results.

Finally, all the techniques discussed here are derived in some form or an-
other from the complete Navicr-Stokes equations given by Eqs. (6.1) to (6.6). It
is important to examine these equations again, and to review Sec. 6.2, before
progressing further.

8.2 VISCOUS SHOCK-LAYER TECHNIQUE

Although all the techniques discussed in this chapter deal with fully viscous
flows, one technique has acquired the official label as the “viscous shock-layer”
method. We will follow this terminology here. Specifically, in 1970, the late Tom
Davis introduced a solution of a set of equations which approximate the Navier-
Stokes equations, and used them to solve for the fully viscous shock layer over
a blunt body at hypersonic speeds. (See Rel. 134.) His technique has subsc-
quently become commonly known as the “viscous shock-layer” (VSL) tech-
nique. Davis’ viscous shock-layer equations are obtained by writing the full
Navier-Stokes equations (see Sec. 6.2) in boundary layer coordinates (parallel
and perpendicular respectively to the surface), and performing an order-of-mag-
nitude analysis on the terms in the equations. Terms are kept up to second
order in 1/'\/Rc. This fcads to a system of equations which is more powerful
than the boundary layer equations in that they hold across the entire shock
layer, but which is far simpler than the full Navier-Stokes equations. Moreover,
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Davis” VSL equations are parabolic, and therefore allow a downstream-marching
finite-difference solution, starting from some specified initial data plane. Of par-
ticular distinction is that the VSL equations take into account a pressure gradi-
ent in the normal dircction to the surface, dp/dn # 0, in contrast to the familiar
boundary layer assumption. We have already seen from Sec. 6.4 that, for hyper-
sonic flow, accounting for such a nonzero pressure gradient is quite appropriate.

The derivation and discussion of the basic equations ultimately used in the
VSL technique can be found in Ref. 135. The details are beyond the scope of the
present book. However, the important ideas are as follows. The Navier-Stokes
cquations are first written in boundary layer coordinates s and n parallel and
perpendicular to the surface respectively, as shown in Fig. 8.1. The resulting
cquations are then nondimensionalized in two different ways: (1) one set of
equations is obtained by forming nondimensional variables that are of order one
ncar the body surface; and (2) a second set of equations is obtained by nondi-
mensionalizing in terms of variables of order one in the nearly inviscid region
far away from the surface. Terms in each of the two sets of equations that are
third order or higher in terms of the inverse square root of the Reynolds number
are dropped. Finally, after a comparison of the two sets of equations, one set 1s
found from them which is valid to second order in both the inner and outer
regions. These equations, as they appear in Rel. 134, are displayed below (see
also Ref. 52).

FIGURE 8.1
Coordinale system for VSL equations.
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Continuity equation
n
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In Egs. (8.1)-(8.4), the nondimensional variables are defined as:

C v
K*:% 11*:;— ¥ = -
@ @
T* = ;r, P* = mip 3
Trc( Pw Vao
pr=t s
0 Hret

where, from Fig. 8.1, R is the nose radius, x is the longitudinal body curvature,
V. and p, are the free-stream velocity and density, respectively, and T, and
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Mo are reference values; T, = V2 /e, . Also, in Egs. (8.2) and (8.4), ¢ is de-
fined as

o [t
C o\ PaVaR

Do not be intimidated by the form of the above equations; their sceming
complexity is really due to the curvilinear, boundary-oriented coordinate system.
To recast them in the more familiar two-dimensional cartesian coordinate sys-
tem, set m=0, x* =0, x* =% and y* =n* and express the variables in
dimensional form, obtaining:

Continnity equation

Hpw) | opv) _

=0 8.5
0x ay 5
X Mamentum equation
du u op 0 ou
+pv =~ -+ - 8.6
Pog™? dy ox  dy a dy 86)
y Momentum equation
dv v ap
: [ 8.7
P + pv 3y 3 (8.7)
Energy equation
Oh oh 0 orT dp op an\?
wm o A+ pr = k + u +v . + 8.8
P o ! dy ﬁy( 0y> *ox dy a dy (5.5)

where h = ¢,T. Examine Eqs. (8.5)-(8.8) closely, and compare them with the
boundary layer equations given by Fgs. (6.27)-(6.30). We find that the viscous
shock layer equations given by Eqs. (8.5)-(8.8) are essentially the boundary layer
equations with two notable exceptions, as follows:

17 [g. (8.7) is a y-momentum equation which allows a finite value of Jp/dy,
unlike Eq. (6.29) for the classical boundary layer case.

2. Equation (8.8) contains a normal pressure gradient term, v(0p/dy), which does
not appear in the corresponding boundary layer energy equation, Lq. (6.30).

Therefore, in our hierarchy of solutions for a fully viscous flow, we can visualize
the VSL equations as “one notch up” from the boundary layer equations. How-
ever, in being so, the VSL equations have the distinct advantage of allowing a
normal pressure gradient in the flow, and hence can be integrated across the
entire viscous flowfield. At the same time, the VSL equations retain the same
convenience as the boundary layer equations, namely, they can be solved by



COMPUTATIONAL 1LUID DYNAMIC SOLUTIONS OF HYPERSONIC VISCOUS FLOWS 341

means of a downstream marching finite-difference procedure. An implicit meth-
od is employed, stmilar to that discussed in Sec. 6.6 for nonsimilar boundary
layers. Because the flow conditions behind the shock wave are the outer bound-
ary conditions on the viscous flowfield, and the shock shape is not known in
advance, a global iteration is needed (using mass continuity) to obtain the shock
shape and location. The shock wave is treated as a discontinuity, with either the
exact oblique shock relations holding across the wave (see Chap. 2), or for very
low density cases, a shock “slip” condition is used. The solution starts at the
stagnation streambine, where the VSL equations become ordinary diflerential
equations, and then marches downstream, solving the viscous flow across the
shock layer at each streamwise station. See Ref. 134 for details on the numerical
solution.

Some results obtained with the VSL equations are given by Davis in Rel.
134. An analytical blunt-body shape was treated, namely a 45 hyperboloid. The
flow conditions were M, = 10, £ =0.1806, y =14, Pr=0.7, and T, /T, = 0.2.
Some results obtained from Ref. 134 are shown in Figs. 8.2-8.6. For example, in
Fig. 8.2 we see the calculated variation of ¢, versus distance along the surface,
starting at the stagnation point. Here, unlike the usual convention where ¢ is
based on p, and u, at the edge of the boundary layer, the skin friction coeflicient
in Fig. 8.2 is defined as t/3p, V.. This is because the shock layer is being
treated as fully viscous, and a distinct boundary layer is therefore not an easily
distinguished item. Note that the shear stress is zero at the stagnation point,
mncreases rapidly over the blunt nose, reaches a maximum value about one nose
radius downstream, and then progressively decreases further downstream. Tan-
gential velocity profiles are shown in Fig. 8.3. Here, uy, and ng, are the velocity
and shock layer coordinate immediately behind the bow shock wave; both u,
and n, are functions of ocation along the shock, i.e., are functions of s. In Fig.
8.3, u/u, is plotted versus n/ug, in the same manner as we plotted boundary
layer profiles in Chapter 6. Profiles are shown for different streamwise locations

018~ M, =10
0.16
0.14
0.12

0 1 1

L L I | 1 ]
0 05 1.0 1.5 20 2.5 30 35 4.0

s = distance along surface in nose radii

FIGURE 8.2
Skin [riction on a 45 hyperboloid; VSL caleulations of Davis, Ref. 134.
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FIGURE 83

Tangential velocity profites on a 457 hyperbotoid at various streamwise stations. Same conditions as
Fig. 8.2. (From Ref. 134.)
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ecmperature profiles on a 45° hyperboloid at various sircamwise stations. Same conditions as Fig.
2. (From Ref. 134.)
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343

Hear transfer distribution over a 45° hyperboloid. Same conditions as Fig. 8.2. (From Ref. 134.)

denoted by s. The stagnation streamline profile is given by s = 0. Note that, for
the conditions shown, there are substantial velocity gradients all the way across
the shock layer. This is just the type of flow for which a VSL solution is suited;
a boundary layer calculation would not be appropriate. In the same region, Fig.
8.4 shows temperature profiles across the shock layer, and the same comments
can be made here. The heat transfer distribution is given in Fig. 8.5; note that
C,; monotonically decreases as a function of distance downstream of the stagna-
tion point. The corresponding pressure distribution is shown in Fig. 8.6, which

P/Pa

~Full shock layer

0.1} Inviscid blun1 body and characteristics solution
{0 S S N S OO M N O S D Y A M N |
01 23456789 (01112131415161
s = distance along surface in nose radii

|

L1
718 1920

FIGURE 8.6 .
Pressure distribution on a 45° hyperboloid. Same conditions as Fig. 8.2. (From Ref. 134))
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also shows the expected monotonic decrease with s. In Fig. 8.6, results are also
shown for an inviscid-flow calculation using a blunt-body solution in the nose
region and continuing downstream with the method of characteristics. Note that
the pressure distribution from the viscous shock-layer calculation 18 consistently
higher than the inviscid pressure distribution. This is a clear demonstration of a
mild viscous interaction effect occurring on the blunt body.

It is interesting to note that the VSL method has found wide application
to chemically reacting viscous flows, as will be discussed in Part 111,

8.3 PARABOLIZED NAVIER-STOKES SOLUTIONS

In this section we discuss a system of equations which contain more terms than
the VSL cquations, and hence are theoretically more accurate, but which stili
are simpler than the full Navier-Stokes equations. This system is called the pa-
rabolized Navier-Stokes (PNS) equations. They are obtained from the full
Navicr-Stokes equations by dropping the viscous terms that involve derivatives
in the streamwise direction. For example, the exact x component of the steady
flow momentum equation is obtained from Egs. (6.2) and (6.6) as

u Ju Jdu dp 0 Ju
+pv - A pw = —- "+ —[AVV 4 2y -
Ploe ™07 dy PV oz Ox  Ox ( + K 0x>

N 0 ov + on 0 cu N ?fw (8.9)
oyl Max Tay) | ez Mo T ax '

The parabolized form of this equation is obtained by neglecting the viscous
terms that involve the x derivatives, obtaining directly

Jdu + du du op + 0 Ju + 0 Ou (8.10)
O~ - v~ = et o — - .
Plox TP Jy oW 0z ox Jy #(?y oz \" bz
Of particular importance is the steady flow y momentum equation, given in its
exact form by Eqgs. (6.3) and (6.6) as

o ov o p N 0 v + u
) nw o o= — ol =
P ax T oy o 0z dy  Ox M ox dy

0 v 0 ow  Ov
— | AV-V 4+ 2n - — — 4+ - 3.11
+ Oy< Ten 0y> + 0z [”(0}’ + [’z>:| @1

The parabolized form of this equation is aiso obtained by neglecting the viscous
terms that involve the x dertvatives, obtaining directly

v v v dgp 0 149 v ; ow N 0 ow N dv

- - Ny — = — - _ 200 — . — - = _

Ox+pUOy+/“ oz Dy+(7y (420 (')y+ 0z o\ dy @z
(8.12)

Clearly, Eq. (8.12) takes into account a normal pressure gradient across the
shock layer. Morcover, Eq. (8.12) is superior to the corresponding y momentum
equation contained in the VSL system. This can be seen by comparing the two-

pu
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di}nénsional counterpart of Eq. (8.12), namely

e v ap 0 v
PU L + pv =T 2y + oy [(Z + 2p) 0}’] (8.13)
with Eq. (8.7). Clearly, the PNS form given by Eq. (8.13) has a viscous term
which 15 migsing from the VSL form given by Eq. (8.7).

In summary, the parabolized Navier-Stokes equations arc obtained from
the full steady-flow Navier-Stokes equations (given by Eqs. (6.1)-(6.6) with all
time derivatives sct to zero) simply by neglecting all viscous terms which involve
derivatives in the streamwise direction (in the x direction). For convenience, the
resulting system of PNS equations is itemized below.

Continuity equation

Ap) , pv) | Apw)
Ox Jdy 0z

=0 (8.14)
x Momentum equation
91 ou Ou Op dJ Jdu d [ Ou
. pom = — o — 8.15
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y Momentum equation
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Equations (8.14)-(8.18) constitute the parabolized Navier-Stokes equations;
with two exceptions, they are a mixed system of parabolic-hyperbolic partial
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dillerential equations, and hence can be solved by a downstream marching pro-

cedure starting from an initial data line across the flowfield. The two excep-
tions are:

1. The pressure gradient terms, dp/dx, allow the propagation of information up-
strcam through the subsonic portion of the viscous flow near the body sur-
face. Hence, the downstream-marching procedure is not well posed in this
region. [n order to preserve the parabolic nature of the PNS equations, the
assumption is usually made that, in the subsonic region, the pressure is con-
stant in the direction normal to the surface, equal to its value at the first grid
point at which supersonic flow exists.

2. The volumetric heating term in Eq. (8.18), namely, pg can destroy the para-
bolic behavior of the system. For example, in a three-dimensional radiating
flow, if ¢ includes radiative energy absorbed at a point from all dircctions in
the flow, the problem becomes elliptic in nature, and downsteam marching is
not valid. For flows where such volumetric heating does not occur, such a
problem does not exist.

Numerical solutions of the PNS equations are usually carried out using an
implicit finite-different method similar to that discussed in Sec. 6.6. Details con-
cerning the numerical solution are nicely described in Ref. 52, hence no further
claboration will be made here.

An excellent illustration of solutions obtained with the PNS equations is
found in the work of McWherter et al. (Ref. 136). These results also have the
advantage of illustrating a modern calculation of flowfields where viscous inter-
action cflects are important. In Ref. 136, the flows over slender blunt-nosed
cones at small angles of attack are calculated by two methods: (1) a classical
inviscid flow/boundary layer method, where the inviscid flow in the nose region
is computed by meuns of the time-marching technique described in See. 5.3, the
downstream inviscid flow is computed by means of the downstream marching
procedure described in Sec. 5.5, and the boundary layer solution is an integral
method Tollowing the inviscid, three-dimensional streamlines; and (2) a solution
of the PNS equations as described earlier in this section. In the following figures,
ipproach (1) will be labeled as 3DV, and approach (2) will be labeled PNS. ~
Keep in mind that the 3DV method is a classical inviscid flow/boundary-layer
ipproach which does not adequately account for strong viscous interactions; it
loes, however, contain an estimate of the induced pressure based on the dis-
slacement thickness variation. In contrast, the PNS method is a fully viscous
hock-layer approach wherein strong viscous interactions are automatically ac-
‘ounted for, ie., they essentially “come out in the wash™ during the course of
uch solutions. Emphasis is again made that, in the modern world of hyper-
onics, the proper conceptual treatment of viscous interactions is to assume the
hock layer is fully viscous, such as in the PNS case.

Results for a relatively low Mach number hypersonic flow (M, = 5.95)

qth high Reynolds number (Re = 15.23 x 10%) are shown in Fig. 8.7 for the
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FIGURE 87

Pressure distribulions over a slightly blunted cone; comparison between experiment and computa-
tions. (From McWherter et al., Ref. 136.)

flow over a blunt-nosc 6° half-angle cone at an angle of attack o = 4°, For this
flow, the paramecter M?,./\/Re = 0.054, hence viscous interaction cffects should
be negligible. In Fig. 8.7, the pressure distribution p/p,, is plotted versus the
nondimensional distance downstream f{rom the nose, x/D,, where D, is the nose
diameter. Four curves are shown, each corresponding to a circumferential angle
¢ around the cone measured from the windward ray, that is, ¢ = 0 corresponds
to the windward ray and ¢ = 180° corresponds to the leeward ray. The 3DV
calculations are given by the solid curves, and the PNS calculations by the dot-
ted curves. The solid symbols are experimental data obtained from Ref. 137.
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Note the following information from Fig. 8.7: (1) On the windward side, the
pressure rapidly expands over the blunt nose, overexpanding below the cone
value, and then gradually recompressing further downstream. This overexpan-
sion phenomena is analogous to that shown in Fig. 5.12. It should be noted

that, because of the very low value of Mﬂo/\/i{—e for these data, the actual pres-
sure distribution over the blunted cone is mainly governed by inviscid-flow
effeets. (2) The 3DV and PNS calculations agree very closely with each other,
another ramification of the negligible viscous effects for the low Mach number
and high Reynolds number conditions for Fig. 8.7. (3) The calculations agrce
well with experiment.

In contrast, results for a higher Mach number (M, = 9.82) and lower
Reynolds number (Re = 0.459 x 10®) arc shown in Fig. 8.8. Here, a blunted 4°

cone ut an angle of attack of 2.97° is treated. For these conditions, Mi/\/ﬁe =
1.4, a high value which indicates that viscous interactions should be important.
The experimental data shown in Fig. 8.8 is from Ref. 138. Note the following
information from Fig. 8.8: (1) The PNS calculations predict higher pressures
than the 3DV calculations. This is due to the strong viscous interaction effect
which is automatically taken into account by the PNS method. The sizeable
difference between the PNS and 3DV curves is indeed the viscous interaction
phenomena. (2) The PNS results agree favorably with the experimental data,
especially on the leeward side (¢ = 180°), where the local Mach number is
higher, the locat Reynolds number is lower, and hence the viscous interaction
eflect is stronger.

Results for an almost identical case are shown in Fig. 8.9. Here, the axial
foree coeflicient C, is plotted versus angle of attack. The experimental data are
(rom Ref. 139. Note that the PNS method predicts a much higher C, than the
IDV method, again a graphic itlustration of the viscous-interaction effect. Also
note that the PNS results agree very well with experiment. thus demonstrating
the superiority of a fully viscous shock-layer calculation in comparison to the
classical inviscid-flow/boundary-layer method for conditions where strong
viscous interactions are important,

In summary, Figs. 8.7 -8.9 illustrate an application of the PNS method to a
basic hypersonic-flow problem, as discussed in Rel. 136. The reader is encour-
aged to study Ref. 136 closely for more details. Moreover, these figures demon-
strate the value of a fully viscous shock-layer calculation for conditions where
viscous interactions are strong; the PNS method is a good example of such a
viscous shock layer analysis. However, following the old adage that you “cannot
get something for nothing,” McWherter et al. in Ref. 136 point out the {ollow-
ing, taken directly from their paper:

The PNS solution gencrally requires a large amount of user interaction and the
adjustment of various Input parameters in order to obtain an accurate solution.
The inviscid/boundary-fayer solution is straightforward (o obtain and is, thus, very
well suited for a design environment where rapid job turnaround and low user
intcraction requirements are significant considerations.
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Pressure distributions (as afteclied by viscous interaction) over a slightly blunted cone; comparison
between experiment und computations. (From Ref. 136.)

In other words, even though the PNS solutions are more accurate, it takes a lot
more effort to obtain such solutions.

For & moment, let us consider the matter of flow separation. The classical
boundary layer equations discussed in Chap. 6 do not allow the calculation
of separated flows; such solutions “blow up” on the computer when zones of
separated flow are encountered. Similarly, the VSL equations discussed in Sec.
82 do not allow the calculation of separated flow. The basic reason in both
cases is that separated flow involves upstream feeding of information in the
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FIGURE 8.9
Viscous interaction effects on axial force coeflicient on slightly bilunted cones; comparison between
experiment and compulations. (From Ref. 136.) '

flowficld, and downstrecam-marching methods, such as boundary layer and VSL
calculations, do not allow or tolerate such upstream feeding. The same can al-
most be said for the PNS method, with one notable exception. Because of the
nature of the z momentum equation, Eq. (8.17), the PNS method can predict
flow separation in the crossflow plane; it cannot, however, handle separation in
the streamwise direction. There are many problems where crossflow separation
is the dominant mechanism, such as an axisymmetric body at angle of attack,
and for these the PNS method does a reasonable job of handling the separated
flow. For example, Fig. 8.10 shows a blunt-nosc bent biconic body studied by
Gnoflo in Ref. 140, Solving the hypersonic flowficld over the body at « = 20°
ind M, =6 by means of a PNS solution, Gnoffo obtained the crossflow sepa-
ration results shown in Fig. 8.11. Here, only a portion of the crossflow plane at
x/R, =7 is shown; this portion is on the leeward side, near the top of the vehi-
cle. We see the outer crossflow velocity vectors coming around the body from
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FIGURI &.10
Blunt and straight biconic configurations for the calculations of Gnoflo, Ref. 140.

right to left, and crossflow separation with reversed flow taking place ncar the
surfuce of the body. This velocity field is the computed result from Gnoffo’s
PNS analysis. The separation lines agree well with experiment, as seen in Fig.
8.12. Here, we are looking at the top view of the bent biconic. The crosses
represent the separation lines computed from the PNS method, and the dashed
lines ure experimental results obtained from surface oil flow visualization. Figure
8.12 also shows the computed and measured lines of local minimum pressure on
the leeward surface. In all cases, agreement between experiment and the PNS
calculations is very good. Hence, in Figs. 8.11 and 8.12 we sce an important
advantage of the PNS method over both the boundary layer and the VSL meth-
ods, namcly the ability to predict crossflow separation. However, we are re-
minded that none of these downstream marching methods are capable of solving
a separated flow in the streamwise direction.
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FIGURE 8.11 :
Cross-flow scparation as predicted by the PNS calculations of Gnoflo,
Ref. 140.
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Scparalion points and pressure nunmima for the bent biconic
shown in Fig. 8.10; x =20, M, =6, Re,, = 82 x 10°% com-
parison between experiment and the PNS calculations. (From
Ref. 140)
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84 FULL NAVIER-STOKES SOLUTIONS

The ultimate in hypersonic viscous-flow calculations is the solution of the com-
plete Navicr-Stokes equations, i.e., the solution of Egs. (6.1)-(6.6) with no reduc-
tion or simplification of any terms. Such full Navicr-Stokes solutions were
simply drecams in the minds of aerodynamicists as late as 1970. However, the
modern techniques of computational {luid dynamics in combination with new
supercomputers now allow the numerical sotution of the Navier-Stokes equa-
tions; all that is needed for most practical problems is plenty of computer
storage and running time. Such matters arc the subject of this section.

Examine Eqs. (6.1)-(6.6) closely; they are a system of partial differential
equations with a somewhat mixed hyperbolic, parabolic, and elliptic behavior.
The elliptic behavior comes about due to the viscous terms in the x direction,
which allow the upstream propagation of information via thermal conduction
and viscosity. These are precisely the terms which are neglected in the PNS
equations. Because of this clliptic nature, the full Navier-Stokes equations can-
not be solved by a downstream marching philosophy. However, recall that the
problem with the inviscid blunt body case as discussed in Sec. 5.3 was the mixed
hyperbolic and elliptic behavior of the flowficld, and this problem was even-
tually sotved by using the time-marching technique, also described in Sec. 5.3.
The same holds truc for numerical solutions of the full Navier-Stokes equations;
such solutions must be time-marching solutions in order to take into account
the elliptic behavior,

The time-marching solution of the Navier-Stokes equations is mnherently
straightforward, and is patterned after the philosophy given in Sec. 5.3. Let us
write Eqgs. (0.1)-(6.5) such that the time derivatives are on the left side and all
spatial derivatives are on the right side of the equations, as follows:

Continuity equation

p _ Apu) dpv)  Npw)

— AT 8.19
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x Momentum equation
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354 vIsCOUS LLYPERSONIC FLOW

Energy equation
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The time-marching solution of these equations is conceptually carried out as
follows:

1. Cover the flowfield with grid points, and assume arbitrary values of all the
dependent variables at each grid point. This represents the assumed initial
conditions at time ( = (. .

2. Caleulate the values of p, u, », w, and (e + V%/2) from Egs. (8.19)-(8.23) as
function of time, using a time-marching finite-difference method. One such
method is the explicit predictor-corrector technique of MacCormack de-
scribed in detail in Sec. 5.3. (Indeed, the reader should review this technique
as described in Sec. 5.3 before progressing further.)

3. The final steady state flow is obtained in the asymptotic limit of large times.
In most cases, this 1s the desired result. However, the time-marching proce-
dure can also be used to calculate the transient behavior of viscous flows, as
well.

The numerical solution of the full Navier-Stokes equations for hypersonic
flows is a state-of-the-art research problem at present. Many numerical ap-
proaches have been and arc being developed and studied, both using explicit
and implicit finite-difference methods. Sce Ref. 52 for an organized presentation
of such methods. Qur purpose here is not to delve into any of these methods in
detatl, but rather to give the flavor of results obtained from such Navier-Stokes
solutions.

At the beginning of this section, we stated that the “ultimate™ in hyper-
sonic viscous flow caleulations is the solution of the complete Navier-Stokes
equations. Let us expand this statement by saying that the “ultimate of the
ultimate” would be a full Navicr-Stokes calculation of the flowficld over a com-
plete, three-dimensional airplane configuration. Such a calculation has recently
been made, for the first time in the history of acrodynamics, by Joe Shang at the
Air Force Flight Dynamics Laboratory, and is described in Ref. 141, Here, the



COMPUTATIONAL FLUID DYNAMIC SOLUTIONS OF HYPERSONIC VISCOUS FLOWS 355

FIGURE 8.13
Three-view of the X-24C hypersonic test vehicle.

viscous flow is calculated over the X-24C hypersonic research vehicle at M =
5.95. A three-view of the X-24C is shown in Fig. 8.13. The calculation carried
out by Shang has the following characteristics.

1. The complete Navier-Stokes equations were used in a conservation form
derivable from Egs. (8.19)-(8.23).

2. The Baldwin-Lomax turbulence model was employed (sce Sec. 6.8).

3. MacCormack’s explicit predictor-corrector finite-difference scheme in pre-
cisely the same form as described in Sec. 5.3 was used for the numerical
solution of the Navier-Stokes equations.

4. The shock-capturing approach was taken (as defined in Sec. 5.5).

5. A mesh system consisting of 475,200 grid points was distributed over the
flowfield.

Sample results from the calculation are shown in Figs. 8.14-8.17. In Figs. 8.14a
and b, peripheral surface pressure distributions are given as a function of nor-
malized arc length at various streamwise stations denoted by x/R,, where R, is
the nose radius, By peripheral distributions, what is meant is a distribution
along a body surface generator that goes from the top to the bottom of the
vehicle at a given streamwise station; these peripheral directions are clearly
shown in Fig. 8.15, which is a perspective view of the X-24C. In Fig. 8.14, the
normalized arc length is defined as the length measured from the top of the
vehicle toward the bottom, divided by the total arc length of each individual
cross section. For graphical clarity, each peripheral distribution at succeeding
axial locations is displaced slightly to the right along the abscissa. Also in Fig.
8.14, the computed results are compared with the experimental data of Ref. 142.
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FIGURE 8.14

Peripheral surface pressure distributions around the X-24C; comparison - between experiment (Ref.
142) and the Navier-S1okes calculations of Shang. (Ref. 141.)
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Peripheral direction
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IHustration of the peripheral direction around the X-24C for the data shown in Fig. 8.14.
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FIGURE 8.16
Pitot pressure contours at the longitudinal station x/R, = 108; comparison between experiment and
calculations. (From Ref. 141.)
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FIGURF. 8.17
Computed surfuce streamlines over the X-24C. (From Ref. 141.)

Note that very good agreement is obtained between the calculations and experi-
ment, The pressure distributions in Fig. 8.14a pertain to the front part of the
vehicle, from the nose region to downstream of the canopy. For example, for
x/R, = 15 and 29.21, the pressures show a relatively constant value along the
side of the vehicle, and a compression at the lower corner of the essentially
trapezoidal cross section (see Fig. 8.13). For x/R, = 43.25, the initial compres-
sion is duc to the canopy, then a relatively constant pressure along the side and
boltom, with the corner compression occurring again. In Fig. 8.14b, the pressure
distributions pertain to the back part of the vehicle, and the various pressure
spikes correspond to fins or a strake protruding into the oncoming flow. In Fig.
8.16, Pitot pressure contours are shown at x/R, = 108. The experimental data is
obtained from Ref. 143. The outer contour corresponds to the shock shape
wrapped around the vehicle; reasonable agreement between the measured and
computed cross-sectional shock shape is obtained. Finally, the computed surface
streamline pattern is shown in Fig. 8.17. The overall calculated aerodynamic lift
and drag coeflicients, obtained by integrating the calculated pressure and shear
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stress distributions over the airplane surface, are compared with experimental
measurements as tabulated below:

Cy Cp Ly
Experimental data 3.676 x 1072 3173 x 1072 1.158
Numerical results 3.503 x 1072 2.960 x 102 1.183
Percent error 471 6.71 pAL

Note that the errors in C; and C,, tend to cancel, giving a reasonably accurate
estimate of lift-to-drag ratio, L/D.

The reader is strongly encouraged to study Ref. 141, not only because of
its hallmark significance in hypersonic viscous flowfield calculations, but also
because it contains some excellent color graphics presentations which cannot be
suitably reproduced in black-and-white in the prescnt book.

Finally, a word about flow separation. Time-marching solutions of the
complete Navier-Stokes equations allow the calculation of fully separated flows
in any direcrion, not just the crossflow direction as in the case of the PNS equa-
tions. This is a marked advantage of full Navier-Stokes solutions over the other
methods presented in this chapter. A sample case is shown in Fig. 8.18, where
the supersonic viscous flow over a rearward-facing step is calculated. The calcu-
lations involve a time-marching finite-difference solution of the two-dimensional
Navier-Stokes equations, as described in Ref. 144, The free-stream conditions
above the step are M, =408, T = 1046 K, y = 1.31 (to partially simulate dis-
sociated air in a supersonic combustion ramjet environment), and Re = 849
based on step height. The wall temperature is given by T, /T, = 0.2957. In Fig.
8.18, the calculated pressure contours are given, which clcarly show the expan-
sion wave emanating from the top corner, the relatively constant pressure region
in the recirculating separate flow behind the step, and the reattachment shock
wave. Similar calculations can be found in Refs. 145 and 146. In all of this work
(Refs. 144-146), the two-dimensional Navier-Stokes equations are solved using
MacCormack’s time-marching, predictor-corrector, finite-difference scheme, as
described in Sec. 5.3.
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FIGURF 8.18
Culeulated pressure contours for the supersonic, separated flow over a rearward-facing step. Navier-
Siokes calculations of Kuruvila and Anderson. (Ref. 144.)
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8.5 SUMMARY AND COMMENTS

This brings to an end our discussion of various categories of fully viscous hyper-
sonic flow calculations. In increasing order of accuracy and complexity, we have
examined the following approaches:

L. Viscous shock layer (VSL) method. This approach uses a system of cquations
which is very much like the classical boundary layer equations, but which
allows a finite normal pressure gradient via a more extensive y-momentum
equation. The VSL mcthod is a downstream-marching technique; it does not
allow for any type of flow separation, The VSL method is in widespread use,
and its relatively straightforward calculational procedure is appreciated by
many cngineers.

2. Parabolized Navier-Stokes (PNS) method. This approach uses a simplified
version of the Navier-Stokes equations wherein the viscous terms involving
streamwise derivatives are neglected. The PNS method allows a finite normal
pressure gradient via a y-momentum equation which, unlike the VSL method,
retains some viscous terms. The PNS method is a downstream-marching
technique; it allows for flow separation in the crossflow plane, but not in the
streamwise direction. The PNS method is in very widespread use; indeed, it
forms the basis of an industry-standard computer program which is used by
virtually all major aerodynamic laboratories and companies. This PNS code
is sophisticated, and requires much user effort to obtain accurate solutions; in
this sense, it is a more demanding method than computer codes based on the
VSL method.

3. Full Navier-Stokes method.  Here, the complete Navier-Stokes equations are
solved by means of a time-marching approach. This method is the ultimate in
conceptual accuracy allowing for pressure gradients and flow separation to
occur as would be the case in the natural flow problem. Such Navier-Stokes
solutions, especially for three-dimensional flows, although carried out in prac-
tice today, arc still state-of-the-art research calculations. Computer storage
requirements and running times can be enormous for such calculations.

‘Also, this brings to an end our discussion of hypersonic viscous flows in
general, and hence an end to Part 11 Return again to our roadmap in Fig. 1.23.
Looking down the column under the heading “viscous flows,” we see that we
have covered a number of important topics dealing with the combined effect of
high Mach number and the transport phenomena of thermal conduction and
viscosity. Recall that in Part 1l our intent has been to examine these cffects
without the extra complication of high-temperature effects. However, this is
about as far as we should go along this route. In Part 1T to follow, we will
examine such high-temperature effects, and we will revisit the problem of hyper-
sonic viscous flows, this time including the chemical reactions and possible
radiative transfer effects that frequently dominate such flows in real life.
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In Part 111, we discuss high-temperature effects in fluid flows. This is inti-
mately related to hypersonic flow, because any high-velocity flow will have
regions where the temperature is high, and therefore physical-chemical processes
can be strong enough to influence and even dominate the flow characteristics. In
refation to our previous discussions, recall that in Part | we examined the ques-
tion: what happens to the fluid dynamics of an inviscid flow when the Mach
number is made very large? In Part 1T we addressed the next logical question:
What happens in a high Mach number flow when the transport phenomena of
viscosity and thermal conduction are included? Now, in Part 111, we consider
the next logical question: What happens in a high Mach number flow when
high temperatures are present? In this regard we will consider both inviscid and
viscous high-temperature flows. However, the material in Part Il goes beyond
applications to just hypersonic flow; it is pertinent to any flow problem where
high temperatures, hence physical-chemical processes, are important. Some ex-
amples are combustion phenomena, high energy lasers, laser-matter interaction,

WK1
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flames, and rocket and jet-engine flowfields. Moreover, much of the basic mate-
rial presented in Part 11 does not depend on our previous discussions in Parts
and 11; therefore, in this sense Part I1] stands as a self-contained presentation of
high-temperature gas dynamics which can be studied in its own right. However,
in the spirit of the present book, we will take many opportunities to relate the
fundamentals of high-temperature gas dynamics to hypersonic flow.
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DYNAMICS:

SOME
INTRODUCTORY
CONSIDERATIONS

In teaching, no doubt it is a good general principle ‘to begin at the
beginning’, but to carry out the same it is necessary to know where
that beginning is.

H. Middleton, British mathematician, 1883
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9.1 THE IMPORTANCE OF
HIGH-TEMPERATURE FLOWS

On July 24, 1969, Apollo Il successfully entered the atmosphere of the earth,
returning from the historic first manned flight to the moon. During its return to
earth, the Apollo vehicle acquired a velocity essentially equal to escape velocity
from the earth, approximately 11.2 km/s. At this entry velocity, the shock-layer
temperature becomes very liurge. How large? Let us make an estimate based on
the results of Chap. 2. The temperature ratio across a normal shock wave is
given by Tig. (2.5). Let us assume that the temperature in the nose region of the
Apollo lupar return vehicle is approximately that behind a normal shock wave,
Le., as given by Eq. (2.5). Considering a given point on the entry trajectory, at
an altitude of 53 km, the vehicle’s Mach number is 32.5. At this altitude, the
free-stream temperature is T, = 283 K. From Eq. (2.5), this yields a shock-layer
temperature behind the shock of 58,128 K—ungodly high, but also totally incor-
rect. 1t is totally incorrect because Eq. (2.5), as many of the equations through-
out all of the preceding chapters, is based on the assumption that the gas has
constant specific heats. In our calculation above we have used for the ratio of
speeific heats, y = 1.4, In reality, at such high temperatures the gas becomes
chemically reacting, and y no longer equal 1.4 nor is it constant, A more realistic
calculation, assuming the flow to be in local chemical equilibrium (a term to be
delined later), yields a shock-layer temperature of 11,600 K—also a very high
temperature, but considerably lower than the 58,128 K originally predicted. The
major points here are:

1. The temperature in the shoek layer of a high-speed entry vehicle can be very
high.

2. If this temperature is not calculated properly, huge errors will result. The
assumption of constant y = 1.4 does not even come close.

One of the functions of Part IIT of this book is to show how to make proper
calculations of the temperature, and indeed of all the properties of a high tem-
perature, chemically reacting flow. Some of the basic physical characteristics of
high temperature hypersonic flows are discussed in Sec. 1.3D; it is important for
you to review See. 1.3D before progressing further.

The considerations discussed above are reinforced by the results shown in
Fig. 1.18, taken from Ref. 4. Here we see the temperature behind a normal shock
wave in air plotted versus velocity at a standard altitude of 52 km. This temper-
ature is indicative of the shock-layer temperature in the nose region of an at-
mospheric entry vehicle. Indeed, the entry velocities for various types of vehicles
are noted on the abscissa, varying from the lower speeds of intermediate range
and intercontinental ballistic missiles (IRBMs and ICBMs), to the very high
speed associated with the return of a space vehicle from Mars. Two curves are
shown, one for a calorically perfect gas with constant y = 1.4, and the other for
an equilibrium chemically reacting gas. The upper curve for a constant y = 1.4
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shows an extremely rapid increase in temperature with velocity, leading to ex-
traordinarily high predicted values of T, at normal entry velocities. Of course, as
described earlier. these predictions are totally incorrect. In contrast, the lower
curve illustrates a calculation where the chemically reacting effects are properly
- taken into account. The temperatures here are still high, but considerably lower
than those predicted on the basis of constant 7 = 1.4. Note that the lower curve
predicts. for the entry velocity of Apollo, a shock-layer temperature of about
11,600 K — the realistic temperature mentioned earlier. Figure 1.18 illustrates two
important points which, for emphasis, we reiterate here: (1) at high velocitics,
the shock-layer temperatures are high, and (2) it is essential that this tempera-
ture be calculated properly.

The applications of the material to be discussed in Part 111 of this book
are widespread. The following are listed as just a few examples.

1 Atmospheric Entry

We have already discussed this application to some cxtent. Here, we will just
note the high-temperature regions in the flowfield around a blunt-nosed entry
body, as sketched in Fig. 9.1, The massive amount of flow kinetic energy in a
hypersonic free stream is converted to internal energy of the gas across the
strong bow shock wave, hence creating very high temperatures in the shock
layer ncar the nose. In addition, downstream of the nosc region, where the
shock layer gas has expanded and cooled around the body, we have a boundary

Strong bow —
shock wave

High-temperature
boundary layer

M, > 1

High-temperature ~
shock fayer region

FIGURE 9.1
Schematic of the high-temperature regions in an entry-body flowfield.
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FIGURE 9.2
Schematic of the plasma sheath around an entry body.

fluid
element

{GURE 9.3
chematic of 1he nonadiabatic, radiating flowfield around a body.
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layer with an outer-edge Mach number that is still high; hence, the intense fric-
tional dissipation within the hypersonic boundary layer creates high tempera-
tures, and can causc the boundary layer to become chemically reacting. Another
aspect of entry-body flowfields occurs when ionization is present in the shock
layer, hence providing large numbers of free electrons throughout the shock
layer. This is illustrated in Fig. 9.2, where an entry body is sheathed in a flow
with ions and free electrons, For air, the principle ionized species are NO*, O*
and N7, along with the associated free electrons. The free electrons absorb
radio-frequency radiation, and cause a communications blackout to and from
the vehicle during parts of the entry trajectory. This is a serious problem, and
therefore the accurate prediction of the electron number density in the plasma
sheath around the vehicle is frequently of high priority, Yet another aspect of
entry-body flowfields is sketched in Fig. 9.3. If the shock layer temperature is
high enough, the fluid elements in the flow will emit and absorb radiation. This
causcs the flowfield to become nonadiabatic. Recall that throughout all of our
inviscid flow considerations in Part I, we assume the flow to be adiabatic. How-
ever, radiating shock layers will be nonadiabatic, and in such a case we lose
some of the conceptual advantages we enjoyed in Part 1.

2 Rocket Engines

A schematic of a rocket engine is shown in Fig. 9.4, Here, a fuel and oxidizer arc
burned in a combustion chamber, and a chemically reacting gas subsequently
expands through the nozzle of the engine. For the proper design of the engine,
and the accurate prediction of rocket thrust and specific impulse, we need to
know the properties of the products of combustion in the combustion chamber,
and the details of the chemically reacting flow through the nozzle. One question
we can immediately ask is this: Since the contours of supersonic nozzles are
usually designed by the method of characteristics, what happens to the method
of characteristics when the flow is chemically reacting? This question will be

Fuel
Combustion Chemically reacting
chamber nozzle flow
pe =1 atm
T, = 4000 K

A
Oxidizer
FIGURE 94

Schemaiic of a rocket engine.
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addressed in Chaps. 14 and 15. The answers impact the proper design of rocket
engine nozzles.

3 High Enthalpy Wind Tunnels

For hypersonic wind tunnel testing wherein the simulation of high-temperature
flows over bodies is desired, a conventional hypersonic wind tunnel is not suffi-
cient. Such conventional tunnels {requently use electrical resistance heaters to
heat the reservoir air to just enough temperature (typically 1500 K) to avoid
liquefaction of the air in the nozzle expansion and test section. In order to simu-
late shock-layer temperatures in the range of 5000 to 11,000 K, specialized high-
enthalpy facilities are required. One such example is sketched in Fig 9.5. Here
we see an arc tunnel, wherein air is heated to high temperatures by an electric
arc discharge in the reservoir and then the chemically reacting air expands
through a hypersonic nozzle into the test section, exiting through a hypersonic
diffuser. Another high enthalpy device is the shock tunnel sketched in Fig. 9.6.
Here, an incident shock moves from left to right in a shock tube, hitting the end
wall, and reflecting back from right to left. (See Ref. 4 for a basic description of
shock tubes and their associated flow phenomena.) The reflected shock wave is
shown in Fig. 9.6. Behind the reflected shock wave, the gas is at high pressure
and temperature. A diaphragm mounted in the end wall is broken by the high
pressure (or broken by some independent mechanical or electrical device), thus
allowing the high-pressure, high-temperature chemically reacting gas to expand
through the nozzle and pass through the test section and diffuser. Very high
enthalpy and temperature levels (T as high as 11,000 K) can be produced in
such shock tunnels; however, this is a